7 特斯拉磁共振波谱成像预测 IDH 状态和胶质瘤分级。

IF 3.5 2区 医学 Q2 ONCOLOGY Cancer Imaging Pub Date : 2024-05-27 DOI:10.1186/s40644-024-00704-9
Cornelius Cadrien, Sukrit Sharma, Philipp Lazen, Roxane Licandro, Julia Furtner, Alexandra Lipka, Eva Niess, Lukas Hingerl, Stanislav Motyka, Stephan Gruber, Bernhard Strasser, Barbara Kiesel, Mario Mischkulnig, Matthias Preusser, Thomas Roetzer-Pejrimovsky, Adelheid Wöhrer, Michael Weber, Christian Dorfer, Siegfried Trattnig, Karl Rössler, Wolfgang Bogner, Georg Widhalm, Gilbert Hangel
{"title":"7 特斯拉磁共振波谱成像预测 IDH 状态和胶质瘤分级。","authors":"Cornelius Cadrien, Sukrit Sharma, Philipp Lazen, Roxane Licandro, Julia Furtner, Alexandra Lipka, Eva Niess, Lukas Hingerl, Stanislav Motyka, Stephan Gruber, Bernhard Strasser, Barbara Kiesel, Mario Mischkulnig, Matthias Preusser, Thomas Roetzer-Pejrimovsky, Adelheid Wöhrer, Michael Weber, Christian Dorfer, Siegfried Trattnig, Karl Rössler, Wolfgang Bogner, Georg Widhalm, Gilbert Hangel","doi":"10.1186/s40644-024-00704-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients.</p><p><strong>Methods: </strong>We prospectively included 36 patients with WHO 2021 grade 2-4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients' brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status.</p><p><strong>Results: </strong>Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy.</p><p><strong>Conclusions: </strong>We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"67"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129458/pdf/","citationCount":"0","resultStr":"{\"title\":\"7 Tesla magnetic resonance spectroscopic imaging predicting IDH status and glioma grading.\",\"authors\":\"Cornelius Cadrien, Sukrit Sharma, Philipp Lazen, Roxane Licandro, Julia Furtner, Alexandra Lipka, Eva Niess, Lukas Hingerl, Stanislav Motyka, Stephan Gruber, Bernhard Strasser, Barbara Kiesel, Mario Mischkulnig, Matthias Preusser, Thomas Roetzer-Pejrimovsky, Adelheid Wöhrer, Michael Weber, Christian Dorfer, Siegfried Trattnig, Karl Rössler, Wolfgang Bogner, Georg Widhalm, Gilbert Hangel\",\"doi\":\"10.1186/s40644-024-00704-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients.</p><p><strong>Methods: </strong>We prospectively included 36 patients with WHO 2021 grade 2-4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients' brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status.</p><p><strong>Results: </strong>Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy.</p><p><strong>Conclusions: </strong>We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"24 1\",\"pages\":\"67\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-024-00704-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00704-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介随着高分辨率三维 7 特斯拉磁共振波谱成像(MRSI)在高级别胶质瘤中的应用,我们以前发现了瘤内代谢异质性。在这项研究中,我们评估了三维 7 T-MRSI 在术前对胶质瘤分级和异柠檬酸脱氢酶(IDH)状态进行无创分类的潜力。我们证实,超高场(UHF)磁共振成像可检测到IDH突变和胶质瘤分级。这项技术有可能优化胶质瘤患者的围手术期管理:我们前瞻性地纳入了 36 例 WHO 2021 2-4 级胶质瘤患者(20 例 IDH 突变,16 例 IDH 野生型)。我们的 7 T 3D MRSI 序列提供了这些患者大脑的高分辨率代谢图(如胆碱、肌酸、谷氨酰胺和甘氨酸)。我们采用多变量随机森林和支持向量机模型对肿瘤分割内的体素进行分类,以确定胶质瘤的分级和IDH突变状态:随机森林分析得出,基于代谢比率的多变量 IDH 分类的曲线下面积(AUC)为 0.86。我们通过总胆碱(tCho)/总N-乙酰-天冬氨酸(tNAA)比率的差异来区分高分级和低分级肿瘤,得出的AUC为0.99。根据其他测量的代谢比率进行肿瘤分类的准确性相当:我们成功地根据 7 T MRSI 和临床肿瘤分割对 IDH 突变状态和高级别与低级别胶质瘤进行了术前分类。通过这种方法,我们证明了基于成像的肿瘤标志物预测至少与同类研究的准确性相当,突出了 MRSI 在术前肿瘤分类中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
7 Tesla magnetic resonance spectroscopic imaging predicting IDH status and glioma grading.

Introduction: With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients.

Methods: We prospectively included 36 patients with WHO 2021 grade 2-4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients' brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status.

Results: Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy.

Conclusions: We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
期刊最新文献
Clinical significance of visual cardiac 18F-FDG uptake in advanced non-small cell lung cancer. Nuclear medicine imaging in non-seminomatous germ cell tumors: lessons learned from the past failures. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Prediction of lateral lymph node metastasis with short diameter less than 8 mm in papillary thyroid carcinoma based on radiomics. A call for objectivity: Radiologists' proposed wishlist for response evaluation in solid tumors (RECIST 1.1).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1