{"title":"在粗糙表面上滑动时感受到的硬度","authors":"Qingyu Sun, Shogo Okamoto, Hongbo Wang","doi":"10.1109/TOH.2024.3405728","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to investigate the influence of roughened surface features on the perceived hardness of various materials. Thirteen participants used a visual analog scale to evaluate the hardness of ten 3D-printed specimens by sliding a fingertip on them. The specimens had two types of surface features: flat and smooth, or with microscopic rectangular gratings. They were fabricated from two types of plastic with different Young's moduli-2.46 and 9.35 MPa. We found that both surface pattern and mechanical hardness significantly contributed to the perceived hardness of a material individually and without interaction. The roughened surfaces with rectangular gratings were judged to be harder than the flat and smooth surfaces of the same material. Among the parameters of the rectangular gratings, the groove width or periodic surface wavelength significantly contributed to the perceived hardness. Although the root cause of this phenomenon is unknown, friction caused by surface roughness is considered a potential mediator that influences the perceived hardness. The findings of this study can facilitate the manipulation of softness perception through surface design.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness Perceived When Sliding Over Roughened Surfaces.\",\"authors\":\"Qingyu Sun, Shogo Okamoto, Hongbo Wang\",\"doi\":\"10.1109/TOH.2024.3405728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to investigate the influence of roughened surface features on the perceived hardness of various materials. Thirteen participants used a visual analog scale to evaluate the hardness of ten 3D-printed specimens by sliding a fingertip on them. The specimens had two types of surface features: flat and smooth, or with microscopic rectangular gratings. They were fabricated from two types of plastic with different Young's moduli-2.46 and 9.35 MPa. We found that both surface pattern and mechanical hardness significantly contributed to the perceived hardness of a material individually and without interaction. The roughened surfaces with rectangular gratings were judged to be harder than the flat and smooth surfaces of the same material. Among the parameters of the rectangular gratings, the groove width or periodic surface wavelength significantly contributed to the perceived hardness. Although the root cause of this phenomenon is unknown, friction caused by surface roughness is considered a potential mediator that influences the perceived hardness. The findings of this study can facilitate the manipulation of softness perception through surface design.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2024.3405728\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3405728","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在调查粗糙表面特征对各种材料感知硬度的影响。13 名参与者用指尖在 10 个 3D 打印试样上滑动,使用视觉模拟量表来评估其硬度。这些试样有两种表面特征:平整光滑或带有微小矩形光栅。它们由两种不同杨氏模量(2.46 和 9.35 兆帕)的塑料制成。我们发现,表面纹路和机械硬度都会对材料的感知硬度产生显著影响,但两者不会相互影响。带有矩形光栅的粗糙表面比相同材料的平滑表面更坚硬。在矩形光栅的参数中,凹槽宽度或周期性表面波长对感知硬度有显著影响。虽然这一现象的根本原因尚不清楚,但表面粗糙度引起的摩擦被认为是影响感知硬度的潜在媒介。本研究的发现有助于通过表面设计来操控软硬度感知。
Hardness Perceived When Sliding Over Roughened Surfaces.
The objective of this study was to investigate the influence of roughened surface features on the perceived hardness of various materials. Thirteen participants used a visual analog scale to evaluate the hardness of ten 3D-printed specimens by sliding a fingertip on them. The specimens had two types of surface features: flat and smooth, or with microscopic rectangular gratings. They were fabricated from two types of plastic with different Young's moduli-2.46 and 9.35 MPa. We found that both surface pattern and mechanical hardness significantly contributed to the perceived hardness of a material individually and without interaction. The roughened surfaces with rectangular gratings were judged to be harder than the flat and smooth surfaces of the same material. Among the parameters of the rectangular gratings, the groove width or periodic surface wavelength significantly contributed to the perceived hardness. Although the root cause of this phenomenon is unknown, friction caused by surface roughness is considered a potential mediator that influences the perceived hardness. The findings of this study can facilitate the manipulation of softness perception through surface design.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.