Alvin Han, Courtney Hudson-Paz, Beatriz G. Robinson, Laren Becker, Amanda Jacobson, Julia A. Kaltschmidt, Jennifer L. Garrison, Ami S. Bhatt, Denise M. Monack
{"title":"小鼠肠道蠕动的温度依赖性差异是由压力介导的","authors":"Alvin Han, Courtney Hudson-Paz, Beatriz G. Robinson, Laren Becker, Amanda Jacobson, Julia A. Kaltschmidt, Jennifer L. Garrison, Ami S. Bhatt, Denise M. Monack","doi":"10.1038/s41684-024-01376-5","DOIUrl":null,"url":null,"abstract":"Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic–pituitary–adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways. The study reveals that raising mice at 22 °C boosts gut transit speed by two times compared to 30 °C, primarily due to stress signals from the hypothalamic–pituitary–adrenal axis and an increase of corticotropin-releasing hormone.","PeriodicalId":17936,"journal":{"name":"Lab Animal","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41684-024-01376-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent differences in mouse gut motility are mediated by stress\",\"authors\":\"Alvin Han, Courtney Hudson-Paz, Beatriz G. Robinson, Laren Becker, Amanda Jacobson, Julia A. Kaltschmidt, Jennifer L. Garrison, Ami S. Bhatt, Denise M. Monack\",\"doi\":\"10.1038/s41684-024-01376-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic–pituitary–adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways. The study reveals that raising mice at 22 °C boosts gut transit speed by two times compared to 30 °C, primarily due to stress signals from the hypothalamic–pituitary–adrenal axis and an increase of corticotropin-releasing hormone.\",\"PeriodicalId\":17936,\"journal\":{\"name\":\"Lab Animal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41684-024-01376-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41684-024-01376-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab Animal","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41684-024-01376-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Temperature-dependent differences in mouse gut motility are mediated by stress
Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic–pituitary–adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways. The study reveals that raising mice at 22 °C boosts gut transit speed by two times compared to 30 °C, primarily due to stress signals from the hypothalamic–pituitary–adrenal axis and an increase of corticotropin-releasing hormone.
期刊介绍:
LabAnimal is a Nature Research journal dedicated to in vivo science and technology that improves our basic understanding and use of model organisms of human health and disease. In addition to basic research, methods and technologies, LabAnimal also covers important news, business and regulatory matters that impact the development and application of model organisms for preclinical research.
LabAnimal's focus is on innovative in vivo methods, research and technology covering a wide range of model organisms. Our broad scope ensures that the work we publish reaches the widest possible audience. LabAnimal provides a rigorous and fair peer review of manuscripts, high standards for copyediting and production, and efficient publication.