{"title":"杰弗里流体在粗糙圆形微通道中的电磁流体力学(EMHD)流动,其滑移取决于表面电荷。","authors":"Dongsheng Li, Jiayin Dong, Haibin Li","doi":"10.1002/elps.202300297","DOIUrl":null,"url":null,"abstract":"<p>This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n </mrow>\n <annotation>$Re$</annotation>\n </semantics></math> in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon $</annotation>\n </semantics></math> and wave number <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> on velocity and the influence of wall roughness <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon $</annotation>\n </semantics></math> and surface charge density <span></span><math>\n <semantics>\n <msub>\n <mi>σ</mi>\n <mi>s</mi>\n </msub>\n <annotation>${\\sigma }_s$</annotation>\n </semantics></math> on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers (<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$Re = 1$</annotation>\n </semantics></math>) and an increment at high Reynolds numbers (<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>10</mn>\n </mrow>\n <annotation>$Re = 10$</annotation>\n </semantics></math>). For any Reynolds number, a roughness with an odd multiple of wave number (<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>10</mn>\n </mrow>\n <annotation>$k = 6,10$</annotation>\n </semantics></math>) will result in a more stable velocity profile compared to one with an even multiple of wave number (<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$k = 4,8$</annotation>\n </semantics></math>). Decreasing the relaxation time <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>λ</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <annotation>${\\bar{\\lambda }}_1$</annotation>\n </semantics></math> while increasing the retardation time <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>λ</mi>\n <mo>¯</mo>\n </mover>\n <mn>2</mn>\n </msub>\n <annotation>${\\bar{\\lambda }}_2$</annotation>\n </semantics></math> and Hartmann number <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mi>a</mi>\n </mrow>\n <annotation>$Ha$</annotation>\n </semantics></math> can diminish the impact of wall roughness <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon $</annotation>\n </semantics></math> and surface charge density <span></span><math>\n <semantics>\n <msub>\n <mi>σ</mi>\n <mi>s</mi>\n </msub>\n <annotation>${\\sigma }_s$</annotation>\n </semantics></math> on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate at <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$Re = 1$</annotation>\n </semantics></math> and a 32% slippage at <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>10</mn>\n </mrow>\n <annotation>$Re = 10$</annotation>\n </semantics></math>. However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate at <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$Re = 1$</annotation>\n </semantics></math> and a 1.6% rise at <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>10</mn>\n </mrow>\n <annotation>$Re = 10$</annotation>\n </semantics></math>. These findings are crucial for optimizing the EMHD flow models in microchannels.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge–dependent slip\",\"authors\":\"Dongsheng Li, Jiayin Dong, Haibin Li\",\"doi\":\"10.1002/elps.202300297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n </mrow>\\n <annotation>$Re$</annotation>\\n </semantics></math> in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon $</annotation>\\n </semantics></math> and wave number <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> on velocity and the influence of wall roughness <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon $</annotation>\\n </semantics></math> and surface charge density <span></span><math>\\n <semantics>\\n <msub>\\n <mi>σ</mi>\\n <mi>s</mi>\\n </msub>\\n <annotation>${\\\\sigma }_s$</annotation>\\n </semantics></math> on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$Re = 1$</annotation>\\n </semantics></math>) and an increment at high Reynolds numbers (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>10</mn>\\n </mrow>\\n <annotation>$Re = 10$</annotation>\\n </semantics></math>). For any Reynolds number, a roughness with an odd multiple of wave number (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>10</mn>\\n </mrow>\\n <annotation>$k = 6,10$</annotation>\\n </semantics></math>) will result in a more stable velocity profile compared to one with an even multiple of wave number (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$k = 4,8$</annotation>\\n </semantics></math>). Decreasing the relaxation time <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>λ</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>1</mn>\\n </msub>\\n <annotation>${\\\\bar{\\\\lambda }}_1$</annotation>\\n </semantics></math> while increasing the retardation time <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>λ</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\bar{\\\\lambda }}_2$</annotation>\\n </semantics></math> and Hartmann number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mi>a</mi>\\n </mrow>\\n <annotation>$Ha$</annotation>\\n </semantics></math> can diminish the impact of wall roughness <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon $</annotation>\\n </semantics></math> and surface charge density <span></span><math>\\n <semantics>\\n <msub>\\n <mi>σ</mi>\\n <mi>s</mi>\\n </msub>\\n <annotation>${\\\\sigma }_s$</annotation>\\n </semantics></math> on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$Re = 1$</annotation>\\n </semantics></math> and a 32% slippage at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>10</mn>\\n </mrow>\\n <annotation>$Re = 10$</annotation>\\n </semantics></math>. However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$Re = 1$</annotation>\\n </semantics></math> and a 1.6% rise at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>10</mn>\\n </mrow>\\n <annotation>$Re = 10$</annotation>\\n </semantics></math>. These findings are crucial for optimizing the EMHD flow models in microchannels.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.202300297\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202300297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了杰弗里流体在粗糙圆形微通道中的电磁流体力学(EMHD)流动,同时考虑了表面电荷对滑移的影响。通道壁波纹被描述为具有小振幅的周期性正弦波。采用扰动法推导出速度和容积流量的解,并结合三维和二维图形表示法有效地说明了相关参数对它们的影响。其中特别强调了雷诺数 R e $Re$ 在电磁水流研究中的重要性。此外,在不同雷诺数下,主要分别研究了壁面粗糙度 ε $\varepsilon $ 和波数 k $k$ 对速度的影响,以及壁面粗糙度 ε $\varepsilon $ 和表面电荷密度 σ s ${sigma }_s$ 对体积流量的影响。结果表明,在低雷诺数(R e = 1 $Re = 1$)下,增加壁面粗糙度会导致流速降低,而在高雷诺数(R e = 10 $Re = 10$)下则会导致流速增加。对于任何雷诺数,波数为奇数倍(k = 6 , 10 $k = 6,10$ )的粗糙度与波数为偶数倍(k = 4 , 8 $k = 4,8$ )的粗糙度相比,会产生更稳定的速度曲线。减少弛豫时间 λ ¯ 1 ${bar{\lambda }}_1$ 同时增加迟滞时间 λ ¯ 2 ${bar{\lambda }}_2$ 和哈特曼数 H a $Ha$ 可以减小壁面粗糙度 ε $varepsilon $ 和表面电荷密度 σ s ${\sigma }_s$ 对容积流速的影响,而与雷诺数无关。有趣的是,在存在壁面粗糙度的情况下,进一步考虑表面电荷对滑移的影响会导致 R e = 1 $Re = 1$ 时体积流量下降 15%,R e = 10 $Re = 10$ 时滑移 32%。然而,在考虑表面电荷对滑移的影响的条件下,进一步检查壁面粗糙度的存在只会导致 R e = 1 $Re = 1$ 时体积流量下降 1.4%,R e = 10 $Re = 10$ 时体积流量上升 1.6%。这些发现对于优化微通道中的电磁流模型至关重要。
Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge–dependent slip
This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness and wave number on velocity and the influence of wall roughness and surface charge density on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers () and an increment at high Reynolds numbers (). For any Reynolds number, a roughness with an odd multiple of wave number () will result in a more stable velocity profile compared to one with an even multiple of wave number (). Decreasing the relaxation time while increasing the retardation time and Hartmann number can diminish the impact of wall roughness and surface charge density on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate at and a 32% slippage at . However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate at and a 1.6% rise at . These findings are crucial for optimizing the EMHD flow models in microchannels.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.