Qiang Li, Yichao Sun, Kun Zhai, Bingzhi Geng, Zhenkun Dong, Lei Ji, Hui Chen, Yan Cui
{"title":"微生物诱导的膀胱肿瘤炎症反应促进了上皮-间质转化和免疫浸润的增强。","authors":"Qiang Li, Yichao Sun, Kun Zhai, Bingzhi Geng, Zhenkun Dong, Lei Ji, Hui Chen, Yan Cui","doi":"10.1152/physiolgenomics.00032.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera <i>Lachnoclostridium</i> and <i>Sutterella</i> in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.<b>NEW & NOTEWORTHY</b> The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"544-554"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration.\",\"authors\":\"Qiang Li, Yichao Sun, Kun Zhai, Bingzhi Geng, Zhenkun Dong, Lei Ji, Hui Chen, Yan Cui\",\"doi\":\"10.1152/physiolgenomics.00032.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera <i>Lachnoclostridium</i> and <i>Sutterella</i> in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.<b>NEW & NOTEWORTHY</b> The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"544-554\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00032.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00032.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration.
The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera Lachnoclostridium and Sutterella in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.NEW & NOTEWORTHY The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.