Nicolas D. Garzon-Mancera, Farid Khasiyev, Victor J. Del Brutto, Antonio J. Spagnolo Allende, Clinton B. Wright, Mitchell Elkind, Tatjana Rundek, Oscar H. Del Brutto, Jose Gutierrez
{"title":"核磁共振血管造影床旁手动与自动脑动脉直径测量的验证。","authors":"Nicolas D. Garzon-Mancera, Farid Khasiyev, Victor J. Del Brutto, Antonio J. Spagnolo Allende, Clinton B. Wright, Mitchell Elkind, Tatjana Rundek, Oscar H. Del Brutto, Jose Gutierrez","doi":"10.1111/jon.13217","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Brain arterial luminal diameters are reliably measured with automated imaging software. Nonautomated imaging software alternatives such as a Picture Archiving Communication System are more common bedside tools used for manual measurement. This study is aimed at validating manual measurements against automated methods.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We randomly selected 600 participants from the Northern Manhattan Study (NOMAS) and 260 participants from the Atahualpa Project studied with 1.5 Tesla MR angiography. Using the Radiant measuring tool, three independent readers (general practitioner, neurology resident, and vascular neurologist) measured manually the diameter of arterial brain vessels. The same vessels were also measured by LKEB Automated Vessel Analysis (LAVA). We calculated the intraclass correlation coefficient (ICC) of each rater's diameters versus those obtained with LAVA.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The ICC between diameters obtained by the general practitioner or the neurology resident compared to LAVA was excellent for both internal carotid arteries (ICA) and Basilar Arteries (BA) (ICC > .80 in all comparisons) in NOMAS. In the Atahualpa Project, ICC between diameters obtained by a vascular neurologist and LAVA was good for both ICA and BA (ICC > .60 in all comparisons). The ICCs for the measurements of the remaining arteries were moderate to poor.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Results suggest that manual measurements of ICA and BA diameters, but not MCA or ACA, are valid and could be used to identify dilated brain arteries at the bedside and for eventual selection of patients with dolichoectasia into clinical trials.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"588-594"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of bedside manual versus automated measurements of brain arterial diameters from MR angiography\",\"authors\":\"Nicolas D. Garzon-Mancera, Farid Khasiyev, Victor J. Del Brutto, Antonio J. Spagnolo Allende, Clinton B. Wright, Mitchell Elkind, Tatjana Rundek, Oscar H. Del Brutto, Jose Gutierrez\",\"doi\":\"10.1111/jon.13217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Brain arterial luminal diameters are reliably measured with automated imaging software. Nonautomated imaging software alternatives such as a Picture Archiving Communication System are more common bedside tools used for manual measurement. This study is aimed at validating manual measurements against automated methods.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We randomly selected 600 participants from the Northern Manhattan Study (NOMAS) and 260 participants from the Atahualpa Project studied with 1.5 Tesla MR angiography. Using the Radiant measuring tool, three independent readers (general practitioner, neurology resident, and vascular neurologist) measured manually the diameter of arterial brain vessels. The same vessels were also measured by LKEB Automated Vessel Analysis (LAVA). We calculated the intraclass correlation coefficient (ICC) of each rater's diameters versus those obtained with LAVA.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The ICC between diameters obtained by the general practitioner or the neurology resident compared to LAVA was excellent for both internal carotid arteries (ICA) and Basilar Arteries (BA) (ICC > .80 in all comparisons) in NOMAS. In the Atahualpa Project, ICC between diameters obtained by a vascular neurologist and LAVA was good for both ICA and BA (ICC > .60 in all comparisons). The ICCs for the measurements of the remaining arteries were moderate to poor.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Results suggest that manual measurements of ICA and BA diameters, but not MCA or ACA, are valid and could be used to identify dilated brain arteries at the bedside and for eventual selection of patients with dolichoectasia into clinical trials.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 5\",\"pages\":\"588-594\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13217\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Validation of bedside manual versus automated measurements of brain arterial diameters from MR angiography
Background and Purpose
Brain arterial luminal diameters are reliably measured with automated imaging software. Nonautomated imaging software alternatives such as a Picture Archiving Communication System are more common bedside tools used for manual measurement. This study is aimed at validating manual measurements against automated methods.
Methods
We randomly selected 600 participants from the Northern Manhattan Study (NOMAS) and 260 participants from the Atahualpa Project studied with 1.5 Tesla MR angiography. Using the Radiant measuring tool, three independent readers (general practitioner, neurology resident, and vascular neurologist) measured manually the diameter of arterial brain vessels. The same vessels were also measured by LKEB Automated Vessel Analysis (LAVA). We calculated the intraclass correlation coefficient (ICC) of each rater's diameters versus those obtained with LAVA.
Results
The ICC between diameters obtained by the general practitioner or the neurology resident compared to LAVA was excellent for both internal carotid arteries (ICA) and Basilar Arteries (BA) (ICC > .80 in all comparisons) in NOMAS. In the Atahualpa Project, ICC between diameters obtained by a vascular neurologist and LAVA was good for both ICA and BA (ICC > .60 in all comparisons). The ICCs for the measurements of the remaining arteries were moderate to poor.
Conclusion
Results suggest that manual measurements of ICA and BA diameters, but not MCA or ACA, are valid and could be used to identify dilated brain arteries at the bedside and for eventual selection of patients with dolichoectasia into clinical trials.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!