{"title":"时空同步中的新兴性和临界性:互补模型。","authors":"Alessandro Scirè","doi":"10.1162/artl_a_00440","DOIUrl":null,"url":null,"abstract":"<p><p>This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a \"life cycle,\" made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence and Criticality in Spatiotemporal Synchronization: The Complementarity Model.\",\"authors\":\"Alessandro Scirè\",\"doi\":\"10.1162/artl_a_00440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a \\\"life cycle,\\\" made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.</p>\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/artl_a_00440\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Emergence and Criticality in Spatiotemporal Synchronization: The Complementarity Model.
This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a "life cycle," made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.