时空同步中的新兴性和临界性:互补模型。

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2024-05-27 DOI:10.1162/artl_a_00440
Alessandro Scirè
{"title":"时空同步中的新兴性和临界性:互补模型。","authors":"Alessandro Scirè","doi":"10.1162/artl_a_00440","DOIUrl":null,"url":null,"abstract":"<p><p>This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a \"life cycle,\" made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence and Criticality in Spatiotemporal Synchronization: The Complementarity Model.\",\"authors\":\"Alessandro Scirè\",\"doi\":\"10.1162/artl_a_00440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a \\\"life cycle,\\\" made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.</p>\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/artl_a_00440\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作涉及长期集体兴奋特性以及对最近引入的时空多体模型所显示的临界事件的统计分析,该模型被提出作为人工生命的新范例。数值模拟显示,可兴奋的集体结构以动态网络的形式出现,由同步相变边缘的时空活动爆发(雪崩)产生。影片描绘了时空动态,并通过时变集体参数进行量化,显示动态网络经历了自我创建、平衡和自我毁灭的 "生命周期"。集合参数的功率谱显示出 1/f 的幂律尾巴。根据规模和持续时间评估的雪崩统计特性显示,幂律的特征指数与神经网络文献中的实验值一致。从局部到集体的兴奋性角度论证了雪崩的内在机制。讨论了本研究与自组织临界、神经网络和人工生命之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence and Criticality in Spatiotemporal Synchronization: The Complementarity Model.

This work concerns the long-term collective excitability properties and the statistical analysis of the critical events displayed by a recently introduced spatiotemporal many-body model, proposed as a new paradigm for Artificial Life. Numerical simulations show that excitable collective structures emerge in the form of dynamic networks, created by bursts of spatiotemporal activity (avalanches) at the edge of a synchronization phase transition. The spatiotemporal dynamics is portraited by a movie and quantified by time varying collective parameters, showing that the dynamic networks undergo a "life cycle," made of self-creation, homeostasis, and self-destruction. The power spectra of the collective parameters show 1/f power law tails. The statistical properties of the avalanches, evaluated in terms of size and duration, show power laws with characteristic exponents in agreement with those values experimentally found in the neural networks literature. The mechanism underlying avalanches is argued in terms of local-to-collective excitability. The connections that link the present work to self-organized criticality, neural networks, and Artificial Life are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1