{"title":"Daboia siamensis 毒液和分馏物诱发的急性肾损伤中的急性期反应:体内兔肾模型和体外兔肾模型中氧化应激和炎症途径的作用。","authors":"Narongsak Chaiyabutr, Jureeporn Noiprom, Kanyanat Promruangreang, Taksa Vasaruchapong, Panithi Laoungbua, Orawan Khow, Lawan Chanhome, Visith Sitprija","doi":"10.1590/1678-9199-JVATITD-2023-0070","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study examines the direct nephrotoxic effects of <i>Daboia siamensis</i> venom (RVV) and venom fractions in <i>in vivo</i> and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure.</p><p><strong>Methods: </strong>We administered RVV and its venom fractions (PLA<sub>2</sub>, MP, LAAO, and PDE) to rabbits <i>in vivo</i> and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation.</p><p><strong>Results: </strong>In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FE<sub>MDA</sub> and decreases in FE<sub>GSH.</sub> The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased <i>in vivo</i>, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease <i>in vivo</i> but showed elevated levels in the IPK model. A single RVV injection <i>in vivo</i> disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio.</p><p><strong>Conclusion: </strong>RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.</p>","PeriodicalId":17565,"journal":{"name":"Journal of Venomous Animals and Toxins Including Tropical Diseases","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131233/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acute phase reactions in <i>Daboia siamensis</i> venom and fraction-induced acute kidney injury: the role of oxidative stress and inflammatory pathways in <i>in vivo</i> rabbit and <i>ex vivo</i> rabbit kidney models.\",\"authors\":\"Narongsak Chaiyabutr, Jureeporn Noiprom, Kanyanat Promruangreang, Taksa Vasaruchapong, Panithi Laoungbua, Orawan Khow, Lawan Chanhome, Visith Sitprija\",\"doi\":\"10.1590/1678-9199-JVATITD-2023-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study examines the direct nephrotoxic effects of <i>Daboia siamensis</i> venom (RVV) and venom fractions in <i>in vivo</i> and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure.</p><p><strong>Methods: </strong>We administered RVV and its venom fractions (PLA<sub>2</sub>, MP, LAAO, and PDE) to rabbits <i>in vivo</i> and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation.</p><p><strong>Results: </strong>In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FE<sub>MDA</sub> and decreases in FE<sub>GSH.</sub> The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased <i>in vivo</i>, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease <i>in vivo</i> but showed elevated levels in the IPK model. A single RVV injection <i>in vivo</i> disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio.</p><p><strong>Conclusion: </strong>RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.</p>\",\"PeriodicalId\":17565,\"journal\":{\"name\":\"Journal of Venomous Animals and Toxins Including Tropical Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Venomous Animals and Toxins Including Tropical Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-9199-JVATITD-2023-0070\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Venomous Animals and Toxins Including Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-9199-JVATITD-2023-0070","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Acute phase reactions in Daboia siamensis venom and fraction-induced acute kidney injury: the role of oxidative stress and inflammatory pathways in in vivo rabbit and ex vivo rabbit kidney models.
Background: This study examines the direct nephrotoxic effects of Daboia siamensis venom (RVV) and venom fractions in in vivo and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure.
Methods: We administered RVV and its venom fractions (PLA2, MP, LAAO, and PDE) to rabbits in vivo and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation.
Results: In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FEMDA and decreases in FEGSH. The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased in vivo, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease in vivo but showed elevated levels in the IPK model. A single RVV injection in vivo disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio.
Conclusion: RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.
期刊介绍:
Journal of Venomous Animals and Toxins including Tropical Diseases (JVATiTD) is a non-commercial academic open access publication dedicated to research on all aspects of toxinology, venomous animals and tropical diseases. Its interdisciplinary content includes original scientific articles covering research on toxins derived from animals, plants and microorganisms. Topics of interest include, but are not limited to:systematics and morphology of venomous animals;physiology, biochemistry, pharmacology and immunology of toxins;epidemiology, clinical aspects and treatment of envenoming by different animals, plants and microorganisms;development and evaluation of antivenoms and toxin-derivative products;epidemiology, clinical aspects and treatment of tropical diseases (caused by virus, bacteria, algae, fungi and parasites) including the neglected tropical diseases (NTDs) defined by the World Health Organization.