Russell Lowell, David Saucier, Harish Chander, Reuben Burch, Zachary Gillen
{"title":"听觉刺激和视觉刺激对反向运动跳跃过程中反应和响应时间的影响","authors":"Russell Lowell, David Saucier, Harish Chander, Reuben Burch, Zachary Gillen","doi":"10.1177/00315125241256688","DOIUrl":null,"url":null,"abstract":"<p><p>Reacting and responding to an external stimulus is an important component of human performance, and they inform us about a participant's neurophysiological capabilities. Our purpose in this study was to determine whether reaction times (REACT), response times (RT), and countermovement jump (CMJ) performance differ when responding to an auditory (AUD) versus visual (VIS) stimulus. Participants were 17 college-aged volunteers (6 females and 11 males; <i>M</i> age = 23.0, <i>SD</i> = 3.4 years; <i>M</i> height = 174.57, <i>SD</i> = 10.37 cm; <i>M</i> body mass = 73.37, <i>SD</i> = 13.48 kg). Participants performed CMJs on force plates immediately upon receiving an AUD or a VIS stimulus. The AUD stimulus was a beep noise, while the VIS stimulus was a light on a screen in front of the participants. We determined REACT for the tibialis anterior (TA), medial gastrocnemius (GM), vastus lateralis (VL), and biceps femoris (BF) muscles to be the amount of time between stimulus onset and the initiation of the muscle's electromyographic (EMG) signal. We determined RT to be the amount of time between stimulus onset and the beginning of the participant's force production. We assessed CMJ performance via ground reaction forces during the unweighting, braking, and propulsive phases of the jump. We quantified EMG amplitude and frequency during each CMJ phase. We found RT to be faster to the AUD versus the VIS stimulus (<i>p</i> = .007). VL and BF muscles had faster REACT than TA and GM muscles (<i>p</i> ≤ .007). The AUD stimulus was associated with faster CMJ unweighting phase metrics (<i>p</i> ≤ .005). Thus, individuals may react and respond faster to an AUD versus VIS stimulus, with limited improvements in their subsequent physical performance.</p>","PeriodicalId":19869,"journal":{"name":"Perceptual and Motor Skills","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of an Auditory Versus Visual Stimulus on Reaction and Response Time During Countermovement Jumps.\",\"authors\":\"Russell Lowell, David Saucier, Harish Chander, Reuben Burch, Zachary Gillen\",\"doi\":\"10.1177/00315125241256688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reacting and responding to an external stimulus is an important component of human performance, and they inform us about a participant's neurophysiological capabilities. Our purpose in this study was to determine whether reaction times (REACT), response times (RT), and countermovement jump (CMJ) performance differ when responding to an auditory (AUD) versus visual (VIS) stimulus. Participants were 17 college-aged volunteers (6 females and 11 males; <i>M</i> age = 23.0, <i>SD</i> = 3.4 years; <i>M</i> height = 174.57, <i>SD</i> = 10.37 cm; <i>M</i> body mass = 73.37, <i>SD</i> = 13.48 kg). Participants performed CMJs on force plates immediately upon receiving an AUD or a VIS stimulus. The AUD stimulus was a beep noise, while the VIS stimulus was a light on a screen in front of the participants. We determined REACT for the tibialis anterior (TA), medial gastrocnemius (GM), vastus lateralis (VL), and biceps femoris (BF) muscles to be the amount of time between stimulus onset and the initiation of the muscle's electromyographic (EMG) signal. We determined RT to be the amount of time between stimulus onset and the beginning of the participant's force production. We assessed CMJ performance via ground reaction forces during the unweighting, braking, and propulsive phases of the jump. We quantified EMG amplitude and frequency during each CMJ phase. We found RT to be faster to the AUD versus the VIS stimulus (<i>p</i> = .007). VL and BF muscles had faster REACT than TA and GM muscles (<i>p</i> ≤ .007). The AUD stimulus was associated with faster CMJ unweighting phase metrics (<i>p</i> ≤ .005). Thus, individuals may react and respond faster to an AUD versus VIS stimulus, with limited improvements in their subsequent physical performance.</p>\",\"PeriodicalId\":19869,\"journal\":{\"name\":\"Perceptual and Motor Skills\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perceptual and Motor Skills\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00315125241256688\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perceptual and Motor Skills","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00315125241256688","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Effects of an Auditory Versus Visual Stimulus on Reaction and Response Time During Countermovement Jumps.
Reacting and responding to an external stimulus is an important component of human performance, and they inform us about a participant's neurophysiological capabilities. Our purpose in this study was to determine whether reaction times (REACT), response times (RT), and countermovement jump (CMJ) performance differ when responding to an auditory (AUD) versus visual (VIS) stimulus. Participants were 17 college-aged volunteers (6 females and 11 males; M age = 23.0, SD = 3.4 years; M height = 174.57, SD = 10.37 cm; M body mass = 73.37, SD = 13.48 kg). Participants performed CMJs on force plates immediately upon receiving an AUD or a VIS stimulus. The AUD stimulus was a beep noise, while the VIS stimulus was a light on a screen in front of the participants. We determined REACT for the tibialis anterior (TA), medial gastrocnemius (GM), vastus lateralis (VL), and biceps femoris (BF) muscles to be the amount of time between stimulus onset and the initiation of the muscle's electromyographic (EMG) signal. We determined RT to be the amount of time between stimulus onset and the beginning of the participant's force production. We assessed CMJ performance via ground reaction forces during the unweighting, braking, and propulsive phases of the jump. We quantified EMG amplitude and frequency during each CMJ phase. We found RT to be faster to the AUD versus the VIS stimulus (p = .007). VL and BF muscles had faster REACT than TA and GM muscles (p ≤ .007). The AUD stimulus was associated with faster CMJ unweighting phase metrics (p ≤ .005). Thus, individuals may react and respond faster to an AUD versus VIS stimulus, with limited improvements in their subsequent physical performance.