货运列车长度与脱轨风险之间的关系。

IF 3 3区 医学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Risk Analysis Pub Date : 2024-11-01 Epub Date: 2024-05-28 DOI:10.1111/risa.14312
Peter M Madsen, Robin L Dillon, Konstantinos P Triantis, Joseph A Bradley
{"title":"货运列车长度与脱轨风险之间的关系。","authors":"Peter M Madsen, Robin L Dillon, Konstantinos P Triantis, Joseph A Bradley","doi":"10.1111/risa.14312","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence interval: 1.10-1.12) times the derailment odds of running 50-car trains (or a 11% increase), even accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20-1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":" ","pages":"2616-2628"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationship between freight train length and the risk of derailment.\",\"authors\":\"Peter M Madsen, Robin L Dillon, Konstantinos P Triantis, Joseph A Bradley\",\"doi\":\"10.1111/risa.14312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence interval: 1.10-1.12) times the derailment odds of running 50-car trains (or a 11% increase), even accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20-1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding.</p>\",\"PeriodicalId\":21472,\"journal\":{\"name\":\"Risk Analysis\",\"volume\":\" \",\"pages\":\"2616-2628\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/risa.14312\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.14312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,火车越来越长、越来越重,这主要是受铁路行业提高效率和节约成本措施的影响。目前,美国联邦和各州都在考虑对列车长度进行监管,因为人们担心更长的列车可能会有更高的脱轨风险,但人们对列车长度与脱轨风险之间的关系还不甚了解。在本研究中,我们利用联邦铁路管理局(FRA)铁路设备事故和公路铁路道口事故数据库中 2013-2022 年期间的货运列车事故数据,估算货运列车长度与脱轨风险之间的关系。我们确定,较长的列车脱轨风险确实较大。根据我们的分析,即使考虑到只需运行一半的 100 卡列车,运行 100 卡列车的脱轨几率也是运行 50 卡列车的 1.11 倍(95% 置信区间:1.10-1.12)(或增加 11%)。对于 200 节车厢的列车,出轨几率增加了 24%(几率比 1.24,95% 置信区间:1.20-1.28),同样考虑到了列车数量减少的需要。了解脱轨风险是评估铁路系统整体安全性以及未来发展和监管货运铁路运输的重要组成部分。鉴于目前货运列车长度数据的局限性,本研究为实现这一认识迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The relationship between freight train length and the risk of derailment.

In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence interval: 1.10-1.12) times the derailment odds of running 50-car trains (or a 11% increase), even accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20-1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Risk Analysis
Risk Analysis 数学-数学跨学科应用
CiteScore
7.50
自引率
10.50%
发文量
183
审稿时长
4.2 months
期刊介绍: Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include: • Human health and safety risks • Microbial risks • Engineering • Mathematical modeling • Risk characterization • Risk communication • Risk management and decision-making • Risk perception, acceptability, and ethics • Laws and regulatory policy • Ecological risks.
期刊最新文献
JointLIME: An interpretation method for machine learning survival models with endogenous time-varying covariates in credit scoring. Portrayal of risk information and its impact on audiences' risk perception during the Covid-19 pandemic: A multi-method approach. A quantitative analysis of biosafety and biosecurity using attack trees in low-to-moderate risk scenarios: Evidence from iGEM. Two paths of news frames affecting support for particulate matter policies in South Korea: The moderating roles of media exposure and psychological distance. A generalized multinomial probabilistic model for SARS-COV-2 infection prediction and public health intervention assessment in an indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1