全面回顾三维生物打印技术在慢性伤口管理中的应用。

Expert opinion on drug delivery Pub Date : 2024-11-01 Epub Date: 2024-06-25 DOI:10.1080/17425247.2024.2355184
Prathap Madeswara Guptha, Jovita Kanoujia, Ankita Kishore, Neha Raina, Abhishek Wahi, Piyush Kumar Gupta, Madhu Gupta
{"title":"全面回顾三维生物打印技术在慢性伤口管理中的应用。","authors":"Prathap Madeswara Guptha, Jovita Kanoujia, Ankita Kishore, Neha Raina, Abhishek Wahi, Piyush Kumar Gupta, Madhu Gupta","doi":"10.1080/17425247.2024.2355184","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.</p><p><strong>Areas covered: </strong>This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.</p><p><strong>Expert opinion: </strong>The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1573-1594"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of the application of 3D-bioprinting in chronic wound management.\",\"authors\":\"Prathap Madeswara Guptha, Jovita Kanoujia, Ankita Kishore, Neha Raina, Abhishek Wahi, Piyush Kumar Gupta, Madhu Gupta\",\"doi\":\"10.1080/17425247.2024.2355184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.</p><p><strong>Areas covered: </strong>This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.</p><p><strong>Expert opinion: </strong>The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1573-1594\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2024.2355184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2355184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:慢性伤口需要比标准伤口护理更复杂的护理,因为糖尿病等疾病导致慢性伤口越来越严重。三维生物打印技术解决了现有方法的不足,为实现个性化、机械强度高、细胞刺激性强的伤口敷料提供了一条可行之路:这篇综述强调了传统方法的弊端,同时也指出了管理慢性伤口的困难。讨论围绕采用天然生物材料定制敷料展开,并特别强调了三维生物打印技术。通过对最新研究和专利的深入了解,我们可以全面了解 3D 打印敷料在各种慢性伤口中的应用:专家认为,伤口是人类历史上的一种疾病,并强调了与伤口治疗相关的日益增长的困难和费用。专家承认三维打印技术具有革命性意义,但也指出它仍处于起步阶段,有可能加强而不是取代大规模生产。评论强调了3D打印技术在伤口敷料方面的优势,举例说明了智能材料通过刺激血管生成、减轻疼痛和靶向特定酶来改善治疗效果。专家建议,即使面对医疗行业变革的阻力,也要采取行动,将该技术的预期优势转化为患者的实际利益。据信,越来越多的体内研究证据令人充满希望,代表着慢性伤口治疗正朝着复杂的 3D 打印敷料方向积极转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive review of the application of 3D-bioprinting in chronic wound management.

Introduction: Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.

Areas covered: This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.

Expert opinion: The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An opinion on advanced cancer immunotherapy through innovations in PD-1 inhibitor delivery systems. Acceptability of Cyltezo pen among biologics autoinjector patients, autoinjector naïve patients, and healthcare professionals. The potential of nanosystems in disrupting adenosine signaling pathways for tumor immunotherapy. How can nanoemulsions be used for photosensitizer drug delivery? Advanced drug delivery strategies for diabetic retinopathy: a comprehensive review on current medications, delivery methods, device innovations, overcoming barriers, and experimental models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1