{"title":"评估二氧化碳 PC-SAFT EoS 中的体积平移模型","authors":"Yiwen Pang, Nan Hu, Zhongwei Ding, Qunsheng Li","doi":"10.1016/j.fluid.2024.114145","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> properties are crucial for the development of carbon capture, utilization, and storage (CCUS) technologies. This work assesses the performance of two volume translation models for <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, integrated into the I-PC-SAFT equation of state (EoS) to refine the original volume translation constant (<span><math><mi>c</mi></math></span>). The models introduce a temperature-dependent volume translation function and a distance function-based volume translation function, with the latter explored in two forms: <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>P</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span>. The outcomes reveal that the I-PC-SAFT models, incorporating either the temperature-dependent function or the distance functions <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>P</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span>, enhance the prediction accuracy of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> saturated densities over the baseline I-PC-SAFT and PC-SAFT models. Specifically, when estimating liquid <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> densities at fixed pressures ranging from 0.5<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> to 10.0<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, the I-PC-SAFT model with the temperature-dependent volume translation function exhibits reduced predictive deviation at lower pressures. At elevated pressures, however, the deviation is more pronounced. In contrast, the I-PC-SAFT model utilizing the distance function based on <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span> achieves the lowest percentage average deviation (<span><math><mrow><mtext>%</mtext><mi>A</mi><mi>A</mi><mi>D</mi></mrow></math></span>) of 0.63%.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"584 ","pages":"Article 114145"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of volume translation models in PC-SAFT EoS for carbon dioxide\",\"authors\":\"Yiwen Pang, Nan Hu, Zhongwei Ding, Qunsheng Li\",\"doi\":\"10.1016/j.fluid.2024.114145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> properties are crucial for the development of carbon capture, utilization, and storage (CCUS) technologies. This work assesses the performance of two volume translation models for <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, integrated into the I-PC-SAFT equation of state (EoS) to refine the original volume translation constant (<span><math><mi>c</mi></math></span>). The models introduce a temperature-dependent volume translation function and a distance function-based volume translation function, with the latter explored in two forms: <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>P</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span>. The outcomes reveal that the I-PC-SAFT models, incorporating either the temperature-dependent function or the distance functions <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>P</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span>, enhance the prediction accuracy of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> saturated densities over the baseline I-PC-SAFT and PC-SAFT models. Specifically, when estimating liquid <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> densities at fixed pressures ranging from 0.5<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> to 10.0<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, the I-PC-SAFT model with the temperature-dependent volume translation function exhibits reduced predictive deviation at lower pressures. At elevated pressures, however, the deviation is more pronounced. In contrast, the I-PC-SAFT model utilizing the distance function based on <span><math><msub><mrow><mfenced><mrow><mfrac><mrow><mi>∂</mi><mi>T</mi></mrow><mrow><mi>∂</mi><mi>V</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math></span> achieves the lowest percentage average deviation (<span><math><mrow><mtext>%</mtext><mi>A</mi><mi>A</mi><mi>D</mi></mrow></math></span>) of 0.63%.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"584 \",\"pages\":\"Article 114145\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001225\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001225","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluation of volume translation models in PC-SAFT EoS for carbon dioxide
Accurate properties are crucial for the development of carbon capture, utilization, and storage (CCUS) technologies. This work assesses the performance of two volume translation models for , integrated into the I-PC-SAFT equation of state (EoS) to refine the original volume translation constant (). The models introduce a temperature-dependent volume translation function and a distance function-based volume translation function, with the latter explored in two forms: and . The outcomes reveal that the I-PC-SAFT models, incorporating either the temperature-dependent function or the distance functions and , enhance the prediction accuracy of saturated densities over the baseline I-PC-SAFT and PC-SAFT models. Specifically, when estimating liquid densities at fixed pressures ranging from 0.5 to 10.0, the I-PC-SAFT model with the temperature-dependent volume translation function exhibits reduced predictive deviation at lower pressures. At elevated pressures, however, the deviation is more pronounced. In contrast, the I-PC-SAFT model utilizing the distance function based on achieves the lowest percentage average deviation () of 0.63%.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.