在 Zn/SBA-15 催化剂上进行环氧化柠檬烯和 CO2 的环加成反应以合成碳酸柠檬烯酯

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2024-05-01 DOI:10.1016/j.jcou.2024.102817
Carina Mosquera, Aída Luz Villa
{"title":"在 Zn/SBA-15 催化剂上进行环氧化柠檬烯和 CO2 的环加成反应以合成碳酸柠檬烯酯","authors":"Carina Mosquera,&nbsp;Aída Luz Villa","doi":"10.1016/j.jcou.2024.102817","DOIUrl":null,"url":null,"abstract":"<div><p>The cycloaddition reaction of CO<sub>2</sub> with epoxides such as limonene epoxide (LE) to form cyclic carbonates is considered a promising alternative for reducing CO<sub>2</sub> emissions. In this work, CO<sub>2</sub> fixation on LE to produce cyclic carbonates was carried out over Zn/SBA-15 with tetrabutylammonium bromide (TBAB) as co-catalyst and over NH<sub>3</sub>X-Zn/SBA-15 (X= Cl, Br, or I) catalysts. The catalysts were characterized by FT-IR, XRD, N<sub>2</sub> adsorption–desorption isotherms, TEM, NH<sub>3</sub>-TPD, XPS, TGA and Py-FTIR. The Zn/SBA-15 support mainly presents Lewis’s acid sites of medium acidity; the surface area was 512 m<sup>2</sup>/g and 378 m<sup>2</sup>/g and the pore size were 9 nm and 7.2 nm, for Zn/SBA-15 and NH<sub>3</sub>Cl-Zn/SBA-15, respectively. The functionalization of Zn/SBA-15 was verified by FTIR, UV-vis, and XPS analysis. It was found that when Zn/SBA-15 was used as catalyst that reaction time had a significative effect on LE conversion and in the case of limonene carbonate selectivity, co-catalyst concentration variation had the main effect. Zn/SBA-15 catalyst can be reused up to 5 times without significant changes neither in conversion nor in limonene carbonate selectivity. The best LE conversion and limonene carbonate selectivity was 33% and 93%, respectively (1 M LE, 200 mg Zn/SBA-15, 7% TBAB; 30 bar, 18 h, 700 rpm and 20 mL diethyl carbonate). The reported catalytic system is a promising system for obtaining limonene carbonate using a heterogeneous catalyst.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001525/pdfft?md5=116508844f4fbede31cd7f651156a3ab&pid=1-s2.0-S2212982024001525-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cycloaddition of limonene epoxide and CO2 over Zn/SBA-15 catalysts for limonene carbonate synthesis\",\"authors\":\"Carina Mosquera,&nbsp;Aída Luz Villa\",\"doi\":\"10.1016/j.jcou.2024.102817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cycloaddition reaction of CO<sub>2</sub> with epoxides such as limonene epoxide (LE) to form cyclic carbonates is considered a promising alternative for reducing CO<sub>2</sub> emissions. In this work, CO<sub>2</sub> fixation on LE to produce cyclic carbonates was carried out over Zn/SBA-15 with tetrabutylammonium bromide (TBAB) as co-catalyst and over NH<sub>3</sub>X-Zn/SBA-15 (X= Cl, Br, or I) catalysts. The catalysts were characterized by FT-IR, XRD, N<sub>2</sub> adsorption–desorption isotherms, TEM, NH<sub>3</sub>-TPD, XPS, TGA and Py-FTIR. The Zn/SBA-15 support mainly presents Lewis’s acid sites of medium acidity; the surface area was 512 m<sup>2</sup>/g and 378 m<sup>2</sup>/g and the pore size were 9 nm and 7.2 nm, for Zn/SBA-15 and NH<sub>3</sub>Cl-Zn/SBA-15, respectively. The functionalization of Zn/SBA-15 was verified by FTIR, UV-vis, and XPS analysis. It was found that when Zn/SBA-15 was used as catalyst that reaction time had a significative effect on LE conversion and in the case of limonene carbonate selectivity, co-catalyst concentration variation had the main effect. Zn/SBA-15 catalyst can be reused up to 5 times without significant changes neither in conversion nor in limonene carbonate selectivity. The best LE conversion and limonene carbonate selectivity was 33% and 93%, respectively (1 M LE, 200 mg Zn/SBA-15, 7% TBAB; 30 bar, 18 h, 700 rpm and 20 mL diethyl carbonate). The reported catalytic system is a promising system for obtaining limonene carbonate using a heterogeneous catalyst.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001525/pdfft?md5=116508844f4fbede31cd7f651156a3ab&pid=1-s2.0-S2212982024001525-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001525\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024001525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳与环氧化物(如环氧化柠檬烯(LE))发生环加成反应生成环状碳酸盐被认为是减少二氧化碳排放的一种有前途的替代方法。在这项工作中,以四丁基溴化铵(TBAB)为助催化剂的 Zn/SBA-15 和 NH3X-Zn/SBA-15(X= Cl、Br 或 I)催化剂上进行了二氧化碳固定在 LE 上生成环状碳酸盐的反应。催化剂的表征方法包括傅立叶变换红外光谱、X 射线衍射、N2 吸附-脱附等温线、TEM、NH3-TPD、XPS、TGA 和 Py-傅立叶变换红外光谱。Zn/SBA-15 和 NH3Cl-Zn/SBA-15 的比表面积分别为 512 m2/g 和 378 m2/g,孔径分别为 9 nm 和 7.2 nm。傅立叶变换红外光谱、紫外可见光和 XPS 分析验证了 Zn/SBA-15 的功能化。研究发现,使用 Zn/SBA-15 作为催化剂时,反应时间对 LE 转化率有显著影响,而在柠檬烯碳酸酯选择性方面,助催化剂浓度的变化具有主要影响。Zn/SBA-15 催化剂最多可重复使用 5 次,其转化率和碳酸柠檬烯选择性均无明显变化。最佳的 LE 转化率和柠檬烯碳酸酯选择性分别为 33% 和 93%(1 M LE、200 mg Zn/SBA-15、7% TBAB;30 bar、18 h、700 rpm 和 20 mL 碳酸二乙酯)。所报告的催化系统是一种利用异相催化剂获得碳酸柠檬烯的有前途的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cycloaddition of limonene epoxide and CO2 over Zn/SBA-15 catalysts for limonene carbonate synthesis

The cycloaddition reaction of CO2 with epoxides such as limonene epoxide (LE) to form cyclic carbonates is considered a promising alternative for reducing CO2 emissions. In this work, CO2 fixation on LE to produce cyclic carbonates was carried out over Zn/SBA-15 with tetrabutylammonium bromide (TBAB) as co-catalyst and over NH3X-Zn/SBA-15 (X= Cl, Br, or I) catalysts. The catalysts were characterized by FT-IR, XRD, N2 adsorption–desorption isotherms, TEM, NH3-TPD, XPS, TGA and Py-FTIR. The Zn/SBA-15 support mainly presents Lewis’s acid sites of medium acidity; the surface area was 512 m2/g and 378 m2/g and the pore size were 9 nm and 7.2 nm, for Zn/SBA-15 and NH3Cl-Zn/SBA-15, respectively. The functionalization of Zn/SBA-15 was verified by FTIR, UV-vis, and XPS analysis. It was found that when Zn/SBA-15 was used as catalyst that reaction time had a significative effect on LE conversion and in the case of limonene carbonate selectivity, co-catalyst concentration variation had the main effect. Zn/SBA-15 catalyst can be reused up to 5 times without significant changes neither in conversion nor in limonene carbonate selectivity. The best LE conversion and limonene carbonate selectivity was 33% and 93%, respectively (1 M LE, 200 mg Zn/SBA-15, 7% TBAB; 30 bar, 18 h, 700 rpm and 20 mL diethyl carbonate). The reported catalytic system is a promising system for obtaining limonene carbonate using a heterogeneous catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Machine learning-guided optimization of coarse aggregate mix proportion based on CO2 intensity index CO2 derived ABA triblock all-polycarbonate thermoplastic elastomer with ultra-high elastic recovery Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst Electron traps as a valuable criterium of iron oxide catalysts' performance in CO2 hydrogenation Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1