{"title":"采用张量分解的局部-全局注意力融合框架用于医学诊断","authors":"Peishu Wu;Han Li;Liwei Hu;Jirong Ge;Nianyin Zeng","doi":"10.1109/JAS.2023.124167","DOIUrl":null,"url":null,"abstract":"Dear Editor, In this letter, a novel hierarchical fusion framework is proposed to address the imperfect data property in complex medical image analysis (MIA) scenes. In particular, by combining the strengths of convolutional neural networks (CNNs) and transformers, the enhanced feature extraction, spatial modeling, and sequential context learning are realized to provide comprehensive insights on the complex data patterns. Integration of information in different level is enabled via a multi-attention fusion mechanism, and the tensor decomposition methods are adopted so that compact and distinctive representation of the underlying and high-dimensional medical image features can be accomplished [1]. It is shown from the evaluation results that the proposed framework is competitive and superior as compared with some other advanced algorithms, which effectively handles the imperfect property of inter-class similarity and intra-class differences in diseases, and meanwhile, the model complexity is reduced within an acceptable level, which benefits the deployment in clinic practice.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 6","pages":"1536-1538"},"PeriodicalIF":15.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10539345","citationCount":"0","resultStr":"{\"title\":\"A Local-Global Attention Fusion Framework with Tensor Decomposition for Medical Diagnosis\",\"authors\":\"Peishu Wu;Han Li;Liwei Hu;Jirong Ge;Nianyin Zeng\",\"doi\":\"10.1109/JAS.2023.124167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, In this letter, a novel hierarchical fusion framework is proposed to address the imperfect data property in complex medical image analysis (MIA) scenes. In particular, by combining the strengths of convolutional neural networks (CNNs) and transformers, the enhanced feature extraction, spatial modeling, and sequential context learning are realized to provide comprehensive insights on the complex data patterns. Integration of information in different level is enabled via a multi-attention fusion mechanism, and the tensor decomposition methods are adopted so that compact and distinctive representation of the underlying and high-dimensional medical image features can be accomplished [1]. It is shown from the evaluation results that the proposed framework is competitive and superior as compared with some other advanced algorithms, which effectively handles the imperfect property of inter-class similarity and intra-class differences in diseases, and meanwhile, the model complexity is reduced within an acceptable level, which benefits the deployment in clinic practice.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 6\",\"pages\":\"1536-1538\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10539345\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10539345/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10539345/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Local-Global Attention Fusion Framework with Tensor Decomposition for Medical Diagnosis
Dear Editor, In this letter, a novel hierarchical fusion framework is proposed to address the imperfect data property in complex medical image analysis (MIA) scenes. In particular, by combining the strengths of convolutional neural networks (CNNs) and transformers, the enhanced feature extraction, spatial modeling, and sequential context learning are realized to provide comprehensive insights on the complex data patterns. Integration of information in different level is enabled via a multi-attention fusion mechanism, and the tensor decomposition methods are adopted so that compact and distinctive representation of the underlying and high-dimensional medical image features can be accomplished [1]. It is shown from the evaluation results that the proposed framework is competitive and superior as compared with some other advanced algorithms, which effectively handles the imperfect property of inter-class similarity and intra-class differences in diseases, and meanwhile, the model complexity is reduced within an acceptable level, which benefits the deployment in clinic practice.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.