使用 HGCN 在视觉 SLAM 中进行半监督矢量量化

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-02-29 DOI:10.1155/2024/9992159
Amir Zarringhalam, Saeid Shiry Ghidary, Ali Mohades, Seyed-Ali Sadegh-Zadeh
{"title":"使用 HGCN 在视觉 SLAM 中进行半监督矢量量化","authors":"Amir Zarringhalam,&nbsp;Saeid Shiry Ghidary,&nbsp;Ali Mohades,&nbsp;Seyed-Ali Sadegh-Zadeh","doi":"10.1155/2024/9992159","DOIUrl":null,"url":null,"abstract":"<p>We present a novel vector quantization (VQ) module for the two state-of-the-art long-range simultaneous localization and mapping (SLAM) algorithms. The VQ task in SLAM is generally performed using unsupervised methods. We provide an alternative approach trough embedding a semisupervised hyperbolic graph convolutional neural network (HGCN) in the VQ step of the SLAM processes. The SLAM platforms we have utilized for this purpose are fast appearance-based mapping (FABMAP) and oriented fast and rotated short (ORB), both of which rely on extracting the features of the captured images in their loop closure detection (LCD) module. For the first time, we have considered the space formed by these SURF features, robust image descriptors, as a graph, enabling us to apply an HGCN in the VQ section which results in an improved LCD performance. The HGCN vector quantizes the SURF feature space, leading to a bag-of-word (BoW) representation construction of the images. This representation is subsequently used to determine LCD accuracy and recall. Our approaches in this study are referred to as HGCN-FABMAP and HGCN-ORB. The main advantage of using HGCN in the LCD section is that it scales linearly when the features are accumulated. The benchmarking experiments show the superiority of our methods in terms of both trajectory generation accuracy in small-scale paths and LCD accuracy and recall for large-scale problems.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisupervised Vector Quantization in Visual SLAM Using HGCN\",\"authors\":\"Amir Zarringhalam,&nbsp;Saeid Shiry Ghidary,&nbsp;Ali Mohades,&nbsp;Seyed-Ali Sadegh-Zadeh\",\"doi\":\"10.1155/2024/9992159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel vector quantization (VQ) module for the two state-of-the-art long-range simultaneous localization and mapping (SLAM) algorithms. The VQ task in SLAM is generally performed using unsupervised methods. We provide an alternative approach trough embedding a semisupervised hyperbolic graph convolutional neural network (HGCN) in the VQ step of the SLAM processes. The SLAM platforms we have utilized for this purpose are fast appearance-based mapping (FABMAP) and oriented fast and rotated short (ORB), both of which rely on extracting the features of the captured images in their loop closure detection (LCD) module. For the first time, we have considered the space formed by these SURF features, robust image descriptors, as a graph, enabling us to apply an HGCN in the VQ section which results in an improved LCD performance. The HGCN vector quantizes the SURF feature space, leading to a bag-of-word (BoW) representation construction of the images. This representation is subsequently used to determine LCD accuracy and recall. Our approaches in this study are referred to as HGCN-FABMAP and HGCN-ORB. The main advantage of using HGCN in the LCD section is that it scales linearly when the features are accumulated. The benchmarking experiments show the superiority of our methods in terms of both trajectory generation accuracy in small-scale paths and LCD accuracy and recall for large-scale problems.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9992159\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9992159","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们为两种最先进的远距离同步定位与映射(SLAM)算法提出了一种新颖的矢量量化(VQ)模块。SLAM 中的向量量化任务通常使用无监督方法执行。我们提供了一种替代方法,即在 SLAM 过程的 VQ 步骤中嵌入一个半监督双曲图卷积神经网络(HGCN)。我们为此使用的 SLAM 平台是基于外观的快速映射(FABMAP)和定向快速旋转短映射(ORB),这两种方法都依赖于在其闭环检测(LCD)模块中提取捕获图像的特征。我们首次将这些 SURF 特征(稳健的图像描述符)形成的空间视为图形,从而在 VQ 部分应用了 HGCN,提高了 LCD 性能。HGCN 向量对 SURF 特征空间进行量化,从而构建出图像的词袋(BoW)表示法。该表示随后用于确定 LCD 的准确性和召回率。本研究中的方法被称为 HGCN-FABMAP 和 HGCN-ORB。在 LCD 部分使用 HGCN 的主要优势在于,当特征积累到一定程度时,它可以线性扩展。基准实验表明,我们的方法在小规模路径的轨迹生成准确性和大规模问题的 LCD 准确性和召回率方面都更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semisupervised Vector Quantization in Visual SLAM Using HGCN

We present a novel vector quantization (VQ) module for the two state-of-the-art long-range simultaneous localization and mapping (SLAM) algorithms. The VQ task in SLAM is generally performed using unsupervised methods. We provide an alternative approach trough embedding a semisupervised hyperbolic graph convolutional neural network (HGCN) in the VQ step of the SLAM processes. The SLAM platforms we have utilized for this purpose are fast appearance-based mapping (FABMAP) and oriented fast and rotated short (ORB), both of which rely on extracting the features of the captured images in their loop closure detection (LCD) module. For the first time, we have considered the space formed by these SURF features, robust image descriptors, as a graph, enabling us to apply an HGCN in the VQ section which results in an improved LCD performance. The HGCN vector quantizes the SURF feature space, leading to a bag-of-word (BoW) representation construction of the images. This representation is subsequently used to determine LCD accuracy and recall. Our approaches in this study are referred to as HGCN-FABMAP and HGCN-ORB. The main advantage of using HGCN in the LCD section is that it scales linearly when the features are accumulated. The benchmarking experiments show the superiority of our methods in terms of both trajectory generation accuracy in small-scale paths and LCD accuracy and recall for large-scale problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
A Novel Self-Attention Transfer Adaptive Learning Approach for Brain Tumor Categorization A Manifold-Guided Gravitational Search Algorithm for High-Dimensional Global Optimization Problems PU-GNN: A Positive-Unlabeled Learning Method for Polypharmacy Side-Effects Detection Based on Graph Neural Networks Real-World Image Deraining Using Model-Free Unsupervised Learning Complex Question Answering Method on Risk Management Knowledge Graph: Multi-Intent Information Retrieval Based on Knowledge Subgraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1