受猫爪垫启发的分层 Voronoi 结构可大幅增强着陆冲击能量耗散效果

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-05-27 DOI:10.1007/s42235-024-00531-5
Da Lu, Baoqing Pei, Yangyang Xu, Mengyuan Hu, Shijia Zhang, Le Zhang, Xin Huang, Yangwei Wang, Xueqing Wu
{"title":"受猫爪垫启发的分层 Voronoi 结构可大幅增强着陆冲击能量耗散效果","authors":"Da Lu,&nbsp;Baoqing Pei,&nbsp;Yangyang Xu,&nbsp;Mengyuan Hu,&nbsp;Shijia Zhang,&nbsp;Le Zhang,&nbsp;Xin Huang,&nbsp;Yangwei Wang,&nbsp;Xueqing Wu","doi":"10.1007/s42235-024-00531-5","DOIUrl":null,"url":null,"abstract":"<div><p>When a human lands from a high drop, there is a high risk of serious injury to the lower limbs. On the other hand, cats can withstand jumps and falls from heights without being fatally wounded, largely due to their impact-resistant paw pads. The aim of the present study was to investigate the biomechanism of impact resistance in cat paw pads, propose an optimal hierarchical Voronoi structure inspired by the paw pads, and apply the structure to bionic cushioning shoes to reduce the impact force of landing for humans. The microstructure of cat paw pads was observed via tissue section staining, and a simulation model was reconstructed based on CT to verify and optimize the structural cushioning capacity. The distribution pattern, wall thickness of compartments, thickness ratio of epidermis and dermis, and number of compartments in the model were changed and simulated to achieve an optimal composed structure. A bionic sole was 3D-printed, and its performance was evaluated via compression test and a jumping-landing experiment. The results show that cat paw pads are a spherical cap structure, divided from the outside to the inside into the epidermis, dermis, and compartments, each with different cushioning capacities. A finite element simulation of different cushioning structures was conducted in a cylinder with a diameter of 20 mm and a height of 10 mm, featuring a three-layer structure. The optimal configuration of the three layers should have a uniform distribution with 0.3–0.5 mm wall thickness, a 1:1–2 thickness ratio of epidermis and dermis, and 100–150 compartments. A bionic sole with an optimized structure can reduce the peak impact force and delay the peak arrival time. Its energy absorption rate is about 4 times that of standard sole. When jumping 80, 100, and 120 cm, the normalized ground reaction force is also reduced by 8.7%, 12.6% and 15.1% compared with standard shoes. This study provides theoretical and technical support for effective protection against human lower limb landing injuries.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1847 - 1861"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Voronoi Structure Inspired by Cat Paw Pads Substantially Enhances Landing Impact Energy Dissipation\",\"authors\":\"Da Lu,&nbsp;Baoqing Pei,&nbsp;Yangyang Xu,&nbsp;Mengyuan Hu,&nbsp;Shijia Zhang,&nbsp;Le Zhang,&nbsp;Xin Huang,&nbsp;Yangwei Wang,&nbsp;Xueqing Wu\",\"doi\":\"10.1007/s42235-024-00531-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When a human lands from a high drop, there is a high risk of serious injury to the lower limbs. On the other hand, cats can withstand jumps and falls from heights without being fatally wounded, largely due to their impact-resistant paw pads. The aim of the present study was to investigate the biomechanism of impact resistance in cat paw pads, propose an optimal hierarchical Voronoi structure inspired by the paw pads, and apply the structure to bionic cushioning shoes to reduce the impact force of landing for humans. The microstructure of cat paw pads was observed via tissue section staining, and a simulation model was reconstructed based on CT to verify and optimize the structural cushioning capacity. The distribution pattern, wall thickness of compartments, thickness ratio of epidermis and dermis, and number of compartments in the model were changed and simulated to achieve an optimal composed structure. A bionic sole was 3D-printed, and its performance was evaluated via compression test and a jumping-landing experiment. The results show that cat paw pads are a spherical cap structure, divided from the outside to the inside into the epidermis, dermis, and compartments, each with different cushioning capacities. A finite element simulation of different cushioning structures was conducted in a cylinder with a diameter of 20 mm and a height of 10 mm, featuring a three-layer structure. The optimal configuration of the three layers should have a uniform distribution with 0.3–0.5 mm wall thickness, a 1:1–2 thickness ratio of epidermis and dermis, and 100–150 compartments. A bionic sole with an optimized structure can reduce the peak impact force and delay the peak arrival time. Its energy absorption rate is about 4 times that of standard sole. When jumping 80, 100, and 120 cm, the normalized ground reaction force is also reduced by 8.7%, 12.6% and 15.1% compared with standard shoes. This study provides theoretical and technical support for effective protection against human lower limb landing injuries.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1847 - 1861\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00531-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00531-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当人类从高处落下时,下肢极有可能受到严重伤害。另一方面,猫能够承受从高处跳下和跌落而不会受到致命伤害,这主要归功于它们的抗冲击爪垫。本研究的目的是研究猫爪垫抗冲击的生物力学,提出一种受猫爪垫启发的最佳分层 Voronoi 结构,并将该结构应用于仿生缓冲鞋,以降低人类着陆时的冲击力。通过组织切片染色观察了猫爪垫的微观结构,并基于CT重建了模拟模型,以验证和优化结构的缓冲能力。对模型中的分布模式、隔层壁厚、表皮和真皮的厚度比以及隔层数量进行了改变和模拟,以获得最佳的组成结构。仿生鞋底经三维打印成型,并通过压缩测试和跳跃着陆实验对其性能进行了评估。结果表明,猫爪垫是一个球形盖结构,从外到里分为表皮层、真皮层和隔层,每个隔层都有不同的缓冲能力。我们在一个直径为 20 毫米、高 10 毫米的圆柱体中对不同的缓冲结构进行了有限元模拟,该圆柱体具有三层结构。三层结构的最佳配置应均匀分布,壁厚为 0.3-0.5 毫米,表皮层和真皮层的厚度比为 1:1-2,有 100-150 个隔间。结构优化的仿生鞋底可以降低冲击力峰值,延迟峰值到达时间。其能量吸收率约为标准鞋底的 4 倍。与标准鞋相比,在跳高 80 厘米、100 厘米和 120 厘米时,归一化地面反作用力也分别降低了 8.7%、12.6% 和 15.1%。这项研究为有效防止人体下肢着地受伤提供了理论和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Voronoi Structure Inspired by Cat Paw Pads Substantially Enhances Landing Impact Energy Dissipation

When a human lands from a high drop, there is a high risk of serious injury to the lower limbs. On the other hand, cats can withstand jumps and falls from heights without being fatally wounded, largely due to their impact-resistant paw pads. The aim of the present study was to investigate the biomechanism of impact resistance in cat paw pads, propose an optimal hierarchical Voronoi structure inspired by the paw pads, and apply the structure to bionic cushioning shoes to reduce the impact force of landing for humans. The microstructure of cat paw pads was observed via tissue section staining, and a simulation model was reconstructed based on CT to verify and optimize the structural cushioning capacity. The distribution pattern, wall thickness of compartments, thickness ratio of epidermis and dermis, and number of compartments in the model were changed and simulated to achieve an optimal composed structure. A bionic sole was 3D-printed, and its performance was evaluated via compression test and a jumping-landing experiment. The results show that cat paw pads are a spherical cap structure, divided from the outside to the inside into the epidermis, dermis, and compartments, each with different cushioning capacities. A finite element simulation of different cushioning structures was conducted in a cylinder with a diameter of 20 mm and a height of 10 mm, featuring a three-layer structure. The optimal configuration of the three layers should have a uniform distribution with 0.3–0.5 mm wall thickness, a 1:1–2 thickness ratio of epidermis and dermis, and 100–150 compartments. A bionic sole with an optimized structure can reduce the peak impact force and delay the peak arrival time. Its energy absorption rate is about 4 times that of standard sole. When jumping 80, 100, and 120 cm, the normalized ground reaction force is also reduced by 8.7%, 12.6% and 15.1% compared with standard shoes. This study provides theoretical and technical support for effective protection against human lower limb landing injuries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Sandwich-Structured Solar Cells with Accelerated Conversion Efficiency by Self-Cooling and Self-Cleaning Design From Perception to Action: Brain-to-Brain Information Transmission of Pigeons Design and Motion Characteristics of a Ray-Inspired Micro-Robot Made of Magnetic Film Bionic Jumping of Humanoid Robot via Online Centroid Trajectory Optimization and High Dynamic Motion Controller Multi-Sensor Fusion for State Estimation and Control of Cable-Driven Soft Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1