{"title":"通过添加不同尺寸和形态的 AlOOH 显著改善莫来石陶瓷的机械性能","authors":"Liyang Teng, Jue Wen, Jiarui Yu, Xianlong Zhang, Xueping Wu, Kesong Xiao, Kui Wang, Ying Jiang","doi":"10.1111/ijac.14804","DOIUrl":null,"url":null,"abstract":"<p>Mullite ceramics with high purity and toughness were prepared by hot-press sintering of pyrophyllite at 1300°C using AlOOH nanomaterials with different sizes and morphologies (nanoparticles, nanorods, nanoflakes, and micro-sized sea urchin–like) as additives. Among the four types of AOOH additives, the incorporation of nanoflakes and sea urchins resulted in the formation of a relatively uniformly distributed and tightly packed microstructure within the ceramics, which significantly improved the density and mechanical properties of the ceramic materials. Compared to nano-sized AlOOH, the addition of micron-sized sea urchin–like AlOOH could produce mullite ceramics with best purity and flexural strength. The flexural strength and fracture toughness of ceramics prepared from micro-sized sea urchin–like AlOOH and pyrophyllite reach 427.34 ± 1.99 MPa and 4.68 ± .31 MPa m<sup>1/2</sup>, respectively. During the ball milling process, the originally micron-sized sea urchin–like AlOOH particles were broken down into micro- and nano-sized AlOOH particles. The resulted micron and nanoscale AlOOH particles exhibited synergistic and multi-scale effects with pyrophyllite, which contributed to the formation of uniformly sized and densely arranged mullite crystals within the ceramics. Additionally, the bridging between the mullite crystals further improved the mechanical properties of the mullite ceramic material.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significantly improved mechanical properties of mullite ceramics by adding AlOOH with different sizes and morphologies\",\"authors\":\"Liyang Teng, Jue Wen, Jiarui Yu, Xianlong Zhang, Xueping Wu, Kesong Xiao, Kui Wang, Ying Jiang\",\"doi\":\"10.1111/ijac.14804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mullite ceramics with high purity and toughness were prepared by hot-press sintering of pyrophyllite at 1300°C using AlOOH nanomaterials with different sizes and morphologies (nanoparticles, nanorods, nanoflakes, and micro-sized sea urchin–like) as additives. Among the four types of AOOH additives, the incorporation of nanoflakes and sea urchins resulted in the formation of a relatively uniformly distributed and tightly packed microstructure within the ceramics, which significantly improved the density and mechanical properties of the ceramic materials. Compared to nano-sized AlOOH, the addition of micron-sized sea urchin–like AlOOH could produce mullite ceramics with best purity and flexural strength. The flexural strength and fracture toughness of ceramics prepared from micro-sized sea urchin–like AlOOH and pyrophyllite reach 427.34 ± 1.99 MPa and 4.68 ± .31 MPa m<sup>1/2</sup>, respectively. During the ball milling process, the originally micron-sized sea urchin–like AlOOH particles were broken down into micro- and nano-sized AlOOH particles. The resulted micron and nanoscale AlOOH particles exhibited synergistic and multi-scale effects with pyrophyllite, which contributed to the formation of uniformly sized and densely arranged mullite crystals within the ceramics. Additionally, the bridging between the mullite crystals further improved the mechanical properties of the mullite ceramic material.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14804\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14804","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Significantly improved mechanical properties of mullite ceramics by adding AlOOH with different sizes and morphologies
Mullite ceramics with high purity and toughness were prepared by hot-press sintering of pyrophyllite at 1300°C using AlOOH nanomaterials with different sizes and morphologies (nanoparticles, nanorods, nanoflakes, and micro-sized sea urchin–like) as additives. Among the four types of AOOH additives, the incorporation of nanoflakes and sea urchins resulted in the formation of a relatively uniformly distributed and tightly packed microstructure within the ceramics, which significantly improved the density and mechanical properties of the ceramic materials. Compared to nano-sized AlOOH, the addition of micron-sized sea urchin–like AlOOH could produce mullite ceramics with best purity and flexural strength. The flexural strength and fracture toughness of ceramics prepared from micro-sized sea urchin–like AlOOH and pyrophyllite reach 427.34 ± 1.99 MPa and 4.68 ± .31 MPa m1/2, respectively. During the ball milling process, the originally micron-sized sea urchin–like AlOOH particles were broken down into micro- and nano-sized AlOOH particles. The resulted micron and nanoscale AlOOH particles exhibited synergistic and multi-scale effects with pyrophyllite, which contributed to the formation of uniformly sized and densely arranged mullite crystals within the ceramics. Additionally, the bridging between the mullite crystals further improved the mechanical properties of the mullite ceramic material.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;