{"title":"利用灰色 p 中值线性规划模型确定校园紧急集合点的优先次序","authors":"Damla Yalçıner Çal, Erdal Aydemir","doi":"10.1108/gs-12-2023-0120","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to propose a scenario-based grey methodology using clustering and optimizing with imprecise and uncertain body size data in an emergency assembly point area to assign the people on a campus to reach the emergency assembly points under uncertain disaster times.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Grey clustering and a new grey p-median linear programming model are developed to determine which units to assign to the pre-determined assembly points for a main campus in case of a disaster. The models have two scenarios: 70 and 100% occurrence capacities of administrative and academic personnel and students.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>In this study, the academic and administrative units have been assigned to determine five different emergency assembly points on the main campus by using the numbers of the academic and administrative personnel and student and distances of the units to the assembly point areas of each other. The alternative solutions are obtained effectively by evaluating capacity utilization rates in the scenarios.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>It is often unclear when disasters can occur and therefore, a preliminary preparation time must be required to minimize the risk. In the case of natural, man-made (unnatural) or technological disasters, the people are required to defend themselves and move away from the disaster area as soon as possible in a proper direction. The proposed assignment model yields a final solution that effectively eliminates uncertainty regarding the selection of emergency assembly points for administrative and academic staff as well as students, in the event of disasters.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Grey clustering suggests an assignment plan and concurrently, an investigation is underway utilizing the grey p-median linear programming model. This investigation aims to optimize various scenarios and body sizes concerning emergency assembly areas. All campus users who are present at the disaster in units of the campus are getting uncertainty about which emergency assembly point to use, and with this study, the vital risks aim to be ultimately reduced with reasonable plans.</p><!--/ Abstract__block -->","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"45 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritization of emergency assembly points in a campus using grey p-median linear programming model\",\"authors\":\"Damla Yalçıner Çal, Erdal Aydemir\",\"doi\":\"10.1108/gs-12-2023-0120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to propose a scenario-based grey methodology using clustering and optimizing with imprecise and uncertain body size data in an emergency assembly point area to assign the people on a campus to reach the emergency assembly points under uncertain disaster times.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Grey clustering and a new grey p-median linear programming model are developed to determine which units to assign to the pre-determined assembly points for a main campus in case of a disaster. The models have two scenarios: 70 and 100% occurrence capacities of administrative and academic personnel and students.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>In this study, the academic and administrative units have been assigned to determine five different emergency assembly points on the main campus by using the numbers of the academic and administrative personnel and student and distances of the units to the assembly point areas of each other. The alternative solutions are obtained effectively by evaluating capacity utilization rates in the scenarios.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>It is often unclear when disasters can occur and therefore, a preliminary preparation time must be required to minimize the risk. In the case of natural, man-made (unnatural) or technological disasters, the people are required to defend themselves and move away from the disaster area as soon as possible in a proper direction. The proposed assignment model yields a final solution that effectively eliminates uncertainty regarding the selection of emergency assembly points for administrative and academic staff as well as students, in the event of disasters.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Grey clustering suggests an assignment plan and concurrently, an investigation is underway utilizing the grey p-median linear programming model. This investigation aims to optimize various scenarios and body sizes concerning emergency assembly areas. All campus users who are present at the disaster in units of the campus are getting uncertainty about which emergency assembly point to use, and with this study, the vital risks aim to be ultimately reduced with reasonable plans.</p><!--/ Abstract__block -->\",\"PeriodicalId\":48597,\"journal\":{\"name\":\"Grey Systems-Theory and Application\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grey Systems-Theory and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/gs-12-2023-0120\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/gs-12-2023-0120","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Prioritization of emergency assembly points in a campus using grey p-median linear programming model
Purpose
The purpose of this paper is to propose a scenario-based grey methodology using clustering and optimizing with imprecise and uncertain body size data in an emergency assembly point area to assign the people on a campus to reach the emergency assembly points under uncertain disaster times.
Design/methodology/approach
Grey clustering and a new grey p-median linear programming model are developed to determine which units to assign to the pre-determined assembly points for a main campus in case of a disaster. The models have two scenarios: 70 and 100% occurrence capacities of administrative and academic personnel and students.
Findings
In this study, the academic and administrative units have been assigned to determine five different emergency assembly points on the main campus by using the numbers of the academic and administrative personnel and student and distances of the units to the assembly point areas of each other. The alternative solutions are obtained effectively by evaluating capacity utilization rates in the scenarios.
Practical implications
It is often unclear when disasters can occur and therefore, a preliminary preparation time must be required to minimize the risk. In the case of natural, man-made (unnatural) or technological disasters, the people are required to defend themselves and move away from the disaster area as soon as possible in a proper direction. The proposed assignment model yields a final solution that effectively eliminates uncertainty regarding the selection of emergency assembly points for administrative and academic staff as well as students, in the event of disasters.
Originality/value
Grey clustering suggests an assignment plan and concurrently, an investigation is underway utilizing the grey p-median linear programming model. This investigation aims to optimize various scenarios and body sizes concerning emergency assembly areas. All campus users who are present at the disaster in units of the campus are getting uncertainty about which emergency assembly point to use, and with this study, the vital risks aim to be ultimately reduced with reasonable plans.