非赫米提狄拉克材料中的尤卡瓦-洛伦兹对称性

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-05-27 DOI:10.1038/s42005-024-01629-2
Vladimir Juričić, Bitan Roy
{"title":"非赫米提狄拉克材料中的尤卡瓦-洛伦兹对称性","authors":"Vladimir Juričić, Bitan Roy","doi":"10.1038/s42005-024-01629-2","DOIUrl":null,"url":null,"abstract":"Lorentz space–time symmetry represents a unifying feature of the fundamental forces, typically manifest at sufficiently high energies, while in quantum materials it emerges in the deep low-energy regime. However, its fate in quantum materials coupled to an environment thus far remained unexplored. We here introduce a general framework of constructing symmetry-protected Lorentz-invariant non-Hermitian (NH) Dirac semimetals (DSMs), realized by invoking masslike anti-Hermitian Dirac operators to its Hermitian counterpart. Such NH DSMs feature purely real or imaginary isotropic linear band dispersion, yielding a vanishing density of states. Dynamic mass orderings in NH DSMs thus take place for strong Hubbard-like local interactions through a quantum phase transition, hosting a non-Fermi liquid, beyond which the system becomes an insulator. We show that depending on the internal Clifford algebra between the NH Dirac operator and candidate mass order-parameter, the resulting quantum-critical fluid either remains coupled with the environment or recovers full Hermiticity by decoupling from the bath, while always enjoying an emergent Yukawa-Lorentz symmetry in terms of a unique terminal velocity. We showcase the competition between such mass orderings, their hallmarks on quasi-particle spectra in the ordered phases, and the relevance of our findings for correlated designer NH Dirac materials. Lorentz symmetry plays a fundamental role in classical to quantum electrodynamics, as well as in quantum chromodynamics, which is typically realized at sufficiently high energies and often exclusively in closed or isolated quantum systems. Here, the authors show that such a fundamental space–time symmetry can also be manifest as an emergent symmetry even in open Dirac systems, when they interact with the surrounding environment.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01629-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Yukawa-Lorentz symmetry in non-Hermitian Dirac materials\",\"authors\":\"Vladimir Juričić, Bitan Roy\",\"doi\":\"10.1038/s42005-024-01629-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lorentz space–time symmetry represents a unifying feature of the fundamental forces, typically manifest at sufficiently high energies, while in quantum materials it emerges in the deep low-energy regime. However, its fate in quantum materials coupled to an environment thus far remained unexplored. We here introduce a general framework of constructing symmetry-protected Lorentz-invariant non-Hermitian (NH) Dirac semimetals (DSMs), realized by invoking masslike anti-Hermitian Dirac operators to its Hermitian counterpart. Such NH DSMs feature purely real or imaginary isotropic linear band dispersion, yielding a vanishing density of states. Dynamic mass orderings in NH DSMs thus take place for strong Hubbard-like local interactions through a quantum phase transition, hosting a non-Fermi liquid, beyond which the system becomes an insulator. We show that depending on the internal Clifford algebra between the NH Dirac operator and candidate mass order-parameter, the resulting quantum-critical fluid either remains coupled with the environment or recovers full Hermiticity by decoupling from the bath, while always enjoying an emergent Yukawa-Lorentz symmetry in terms of a unique terminal velocity. We showcase the competition between such mass orderings, their hallmarks on quasi-particle spectra in the ordered phases, and the relevance of our findings for correlated designer NH Dirac materials. Lorentz symmetry plays a fundamental role in classical to quantum electrodynamics, as well as in quantum chromodynamics, which is typically realized at sufficiently high energies and often exclusively in closed or isolated quantum systems. Here, the authors show that such a fundamental space–time symmetry can also be manifest as an emergent symmetry even in open Dirac systems, when they interact with the surrounding environment.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01629-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01629-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01629-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

洛伦兹时空对称性是基本力的一个统一特征,通常表现在足够高的能量下,而在量子材料中,它出现在深低能状态。然而,迄今为止,它在与环境耦合的量子材料中的命运仍未被探索。我们在此介绍一种构建对称保护的洛伦兹不变(NH)非赫米特狄拉克半金属(DSMs)的一般框架,它是通过将类似质量的反赫米特狄拉克算子引用到其赫米特对应算子上实现的。这种 NH Dirac 半金属具有纯实或虚各向同性的线性带色散,从而产生了消失的态密度。因此,NH DSM 中的动态质量排序是通过量子相变发生的类似于哈伯德的强局域相互作用,其中包含一种非费米液体,超过这一相变,系统就变成了绝缘体。我们的研究表明,根据 NH Dirac 算子和候选质量阶参数之间的内部克利福德代数,由此产生的量子临界流体要么与环境保持耦合,要么通过与熔池解耦恢复完全赫尔墨斯性,同时始终以独特的末端速度享有新出现的尤卡瓦-洛伦兹对称性。我们展示了这种质量有序化之间的竞争、有序相中准粒子谱的特征,以及我们的发现与相关设计器 NH Dirac 材料的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yukawa-Lorentz symmetry in non-Hermitian Dirac materials
Lorentz space–time symmetry represents a unifying feature of the fundamental forces, typically manifest at sufficiently high energies, while in quantum materials it emerges in the deep low-energy regime. However, its fate in quantum materials coupled to an environment thus far remained unexplored. We here introduce a general framework of constructing symmetry-protected Lorentz-invariant non-Hermitian (NH) Dirac semimetals (DSMs), realized by invoking masslike anti-Hermitian Dirac operators to its Hermitian counterpart. Such NH DSMs feature purely real or imaginary isotropic linear band dispersion, yielding a vanishing density of states. Dynamic mass orderings in NH DSMs thus take place for strong Hubbard-like local interactions through a quantum phase transition, hosting a non-Fermi liquid, beyond which the system becomes an insulator. We show that depending on the internal Clifford algebra between the NH Dirac operator and candidate mass order-parameter, the resulting quantum-critical fluid either remains coupled with the environment or recovers full Hermiticity by decoupling from the bath, while always enjoying an emergent Yukawa-Lorentz symmetry in terms of a unique terminal velocity. We showcase the competition between such mass orderings, their hallmarks on quasi-particle spectra in the ordered phases, and the relevance of our findings for correlated designer NH Dirac materials. Lorentz symmetry plays a fundamental role in classical to quantum electrodynamics, as well as in quantum chromodynamics, which is typically realized at sufficiently high energies and often exclusively in closed or isolated quantum systems. Here, the authors show that such a fundamental space–time symmetry can also be manifest as an emergent symmetry even in open Dirac systems, when they interact with the surrounding environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1