{"title":"纳米二氧化硅、黄麻和竹纤维增强壳聚糖生物复合材料的吸水性和孔隙率研究","authors":"S. Srivastava, S. K. Sarangi, S. P. Singh","doi":"10.1007/s11182-024-03190-5","DOIUrl":null,"url":null,"abstract":"<p>This study investigates water absorption and porosity in the chitosan matrix reinforced with nano-biosilica, bamboo fiber, and jute fiber used for long bone material implants. The water absorption tests reveal distinct patterns in CP, CF, C1, C2, and C3 biocomposites, thereby highlighting the influence of their composition. Notably, 1% nano-biosilica reduces water absorption, yet increased nano-silica concentrations lead to heightened porosity. Striking a balance between optimal porosity for osseointegration and mechanical strength is crucial. Hybridization proves effective in mitigating water uptake and porosity. This study advances knowledge in biomaterial intricacies, providing crucial insights for tailored implant design.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 6","pages":"865 - 869"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Water Absorption and Porosity of Nano-Biosilica, Jute, and Bamboo Fiber-Reinforced Chitosan Biocomposite Materials\",\"authors\":\"S. Srivastava, S. K. Sarangi, S. P. Singh\",\"doi\":\"10.1007/s11182-024-03190-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates water absorption and porosity in the chitosan matrix reinforced with nano-biosilica, bamboo fiber, and jute fiber used for long bone material implants. The water absorption tests reveal distinct patterns in CP, CF, C1, C2, and C3 biocomposites, thereby highlighting the influence of their composition. Notably, 1% nano-biosilica reduces water absorption, yet increased nano-silica concentrations lead to heightened porosity. Striking a balance between optimal porosity for osseointegration and mechanical strength is crucial. Hybridization proves effective in mitigating water uptake and porosity. This study advances knowledge in biomaterial intricacies, providing crucial insights for tailored implant design.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 6\",\"pages\":\"865 - 869\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03190-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03190-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Water Absorption and Porosity of Nano-Biosilica, Jute, and Bamboo Fiber-Reinforced Chitosan Biocomposite Materials
This study investigates water absorption and porosity in the chitosan matrix reinforced with nano-biosilica, bamboo fiber, and jute fiber used for long bone material implants. The water absorption tests reveal distinct patterns in CP, CF, C1, C2, and C3 biocomposites, thereby highlighting the influence of their composition. Notably, 1% nano-biosilica reduces water absorption, yet increased nano-silica concentrations lead to heightened porosity. Striking a balance between optimal porosity for osseointegration and mechanical strength is crucial. Hybridization proves effective in mitigating water uptake and porosity. This study advances knowledge in biomaterial intricacies, providing crucial insights for tailored implant design.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.