{"title":"瓦纳维德斯定理的一般化","authors":"Asaf Shapira","doi":"10.1017/s096354832400018x","DOIUrl":null,"url":null,"abstract":"<p>A linear equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c\\gt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$\\text{poly}(\\varepsilon )\\cdot n^{k-1}$</span></span></span></span> solutions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span>. It is clear that every abundant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span> is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span> in four variables. We further discuss a generalisation of this problem which applies to all linear equations.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalisation of Varnavides’s theorem\",\"authors\":\"Asaf Shapira\",\"doi\":\"10.1017/s096354832400018x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A linear equation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$c\\\\gt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline10.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\text{poly}(\\\\varepsilon )\\\\cdot n^{k-1}$</span></span></span></span> solutions of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></span></span>. It is clear that every abundant <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></span></span> is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span></span></span> in four variables. We further discuss a generalisation of this problem which applies to all linear equations.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s096354832400018x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832400018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A linear equation $E$ is said to be sparse if there is $c\gt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $\varepsilon n$ contains at least $\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of $E$. It is clear that every abundant $E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every $E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.