Ashley M Earley, Kristen M Nolting, Lisa A Donovan, John M Burke
{"title":"栽培向日葵(Helianthus annuus L.)在不同程度干旱胁迫下的性状变异和表现","authors":"Ashley M Earley, Kristen M Nolting, Lisa A Donovan, John M Burke","doi":"10.1093/aobpla/plae031","DOIUrl":null,"url":null,"abstract":"Background and Aims Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Methods Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Key Results Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e., stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Conclusions Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trait variation and performance across varying levels of drought stress in cultivated sunflower (Helianthus annuus L.)\",\"authors\":\"Ashley M Earley, Kristen M Nolting, Lisa A Donovan, John M Burke\",\"doi\":\"10.1093/aobpla/plae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aims Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Methods Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Key Results Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e., stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Conclusions Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.\",\"PeriodicalId\":48955,\"journal\":{\"name\":\"AoB Plants\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AoB Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aobpla/plae031\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Trait variation and performance across varying levels of drought stress in cultivated sunflower (Helianthus annuus L.)
Background and Aims Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Methods Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Key Results Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e., stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Conclusions Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.