Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia
{"title":"利用高速可微分模拟缩小机器学习与粒子加速器物理学之间的差距","authors":"Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia","doi":"10.1103/physrevaccelbeams.27.054601","DOIUrl":null,"url":null,"abstract":"Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high dimensionality of optimization problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce <span>c</span>heetah, a <span>p</span>y<span>t</span>orch-based high-speed differentiable linear beam dynamics code. <span>c</span>heetah enables the fast collection of large datasets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimization for accelerator tuning and system identification. This positions <span>c</span>heetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of <span>c</span>heetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and modular neural network surrogate modeling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"69 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations\",\"authors\":\"Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia\",\"doi\":\"10.1103/physrevaccelbeams.27.054601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high dimensionality of optimization problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce <span>c</span>heetah, a <span>p</span>y<span>t</span>orch-based high-speed differentiable linear beam dynamics code. <span>c</span>heetah enables the fast collection of large datasets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimization for accelerator tuning and system identification. This positions <span>c</span>heetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of <span>c</span>heetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and modular neural network surrogate modeling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.054601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.054601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations
Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high dimensionality of optimization problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce cheetah, a pytorch-based high-speed differentiable linear beam dynamics code. cheetah enables the fast collection of large datasets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimization for accelerator tuning and system identification. This positions cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and modular neural network surrogate modeling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.