细胞迁移实验中封闭微通道的制作与应用综述

IF 1.9 4区 工程技术 Q2 Engineering International Journal of Precision Engineering and Manufacturing Pub Date : 2024-05-27 DOI:10.1007/s12541-024-01045-0
Mazlee Bin Mazalan, Ryota Toyohara, Toshiro Ohashi
{"title":"细胞迁移实验中封闭微通道的制作与应用综述","authors":"Mazlee Bin Mazalan, Ryota Toyohara, Toshiro Ohashi","doi":"10.1007/s12541-024-01045-0","DOIUrl":null,"url":null,"abstract":"<p>Cell migration is an essential process in a number of physiological and pathological events, and known to be modulated by external microenvironment because cells may sense physical and chemical signals from the microenvironment and collectively respond to these signals. Over the past two decades, a lot of efforts have been made to study how external microenvironment can affect cell migration behaviors. Cells often migrate through confined environments in vivo, such as extracellular matrices in tissues and capillary vessels. Understanding how cells move in these constrained spaces is crucial to clarify various biological processes. For instance, during embryonic development, cells migrate through specific pathways to form tissues and organs. In wound healing, cells migrate to repair damaged tissues. In cancer, tumour cells migrate to invade surrounding tissues and metastasize to distant sites. Recent advances of bio-MEMS technologies have enabled to characterize cell mechanics and to control local cellular environment at micro-scale. In order to study cell migration under confinement, microchannels have been widely fabricated and used due to their directionality and compatibility. Thus, this study reviews recent work on fabrication of microchannels and their applications to investigate cell migration behaviors, ranging from straight channels to tortuous structures. Challenges and limitations associated with studying cell migration in microchannels are also discussed. Reviewing cell migration in confined environments may provide valuable insights into the underlying mechanisms of cell migration and aid in developing strategies for therapeutic interventions.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Fabrication and Applications of Confined Microchannels for Cell Migration Assay\",\"authors\":\"Mazlee Bin Mazalan, Ryota Toyohara, Toshiro Ohashi\",\"doi\":\"10.1007/s12541-024-01045-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cell migration is an essential process in a number of physiological and pathological events, and known to be modulated by external microenvironment because cells may sense physical and chemical signals from the microenvironment and collectively respond to these signals. Over the past two decades, a lot of efforts have been made to study how external microenvironment can affect cell migration behaviors. Cells often migrate through confined environments in vivo, such as extracellular matrices in tissues and capillary vessels. Understanding how cells move in these constrained spaces is crucial to clarify various biological processes. For instance, during embryonic development, cells migrate through specific pathways to form tissues and organs. In wound healing, cells migrate to repair damaged tissues. In cancer, tumour cells migrate to invade surrounding tissues and metastasize to distant sites. Recent advances of bio-MEMS technologies have enabled to characterize cell mechanics and to control local cellular environment at micro-scale. In order to study cell migration under confinement, microchannels have been widely fabricated and used due to their directionality and compatibility. Thus, this study reviews recent work on fabrication of microchannels and their applications to investigate cell migration behaviors, ranging from straight channels to tortuous structures. Challenges and limitations associated with studying cell migration in microchannels are also discussed. Reviewing cell migration in confined environments may provide valuable insights into the underlying mechanisms of cell migration and aid in developing strategies for therapeutic interventions.</p>\",\"PeriodicalId\":14359,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12541-024-01045-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01045-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

细胞迁移是许多生理和病理事件中的一个重要过程,而且已知会受到外部微环境的调控,因为细胞会感知来自微环境的物理和化学信号,并对这些信号做出集体反应。过去二十年来,人们一直致力于研究外部微环境如何影响细胞迁移行为。在体内,细胞经常在受限环境中迁移,如组织中的细胞外基质和毛细血管。了解细胞如何在这些受限空间中移动对阐明各种生物过程至关重要。例如,在胚胎发育过程中,细胞通过特定途径迁移以形成组织和器官。在伤口愈合过程中,细胞迁移以修复受损组织。在癌症中,肿瘤细胞迁移到周围组织并转移到远处。生物微机电系统(Bio-MEMS)技术的最新进展使人们能够在微尺度上描述细胞力学特性并控制局部细胞环境。为了研究封闭条件下的细胞迁移,微通道因其方向性和兼容性而被广泛制造和使用。因此,本研究综述了近期有关微通道制造及其在研究细胞迁移行为中的应用的研究成果,包括直通道和迂回结构。本研究还讨论了与研究微通道中细胞迁移相关的挑战和局限性。研究细胞在封闭环境中的迁移可为了解细胞迁移的基本机制提供有价值的见解,并有助于制定治疗干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Fabrication and Applications of Confined Microchannels for Cell Migration Assay

Cell migration is an essential process in a number of physiological and pathological events, and known to be modulated by external microenvironment because cells may sense physical and chemical signals from the microenvironment and collectively respond to these signals. Over the past two decades, a lot of efforts have been made to study how external microenvironment can affect cell migration behaviors. Cells often migrate through confined environments in vivo, such as extracellular matrices in tissues and capillary vessels. Understanding how cells move in these constrained spaces is crucial to clarify various biological processes. For instance, during embryonic development, cells migrate through specific pathways to form tissues and organs. In wound healing, cells migrate to repair damaged tissues. In cancer, tumour cells migrate to invade surrounding tissues and metastasize to distant sites. Recent advances of bio-MEMS technologies have enabled to characterize cell mechanics and to control local cellular environment at micro-scale. In order to study cell migration under confinement, microchannels have been widely fabricated and used due to their directionality and compatibility. Thus, this study reviews recent work on fabrication of microchannels and their applications to investigate cell migration behaviors, ranging from straight channels to tortuous structures. Challenges and limitations associated with studying cell migration in microchannels are also discussed. Reviewing cell migration in confined environments may provide valuable insights into the underlying mechanisms of cell migration and aid in developing strategies for therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
10.50%
发文量
115
审稿时长
3-6 weeks
期刊介绍: The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to: - Precision Machining Processes - Manufacturing Systems - Robotics and Automation - Machine Tools - Design and Materials - Biomechanical Engineering - Nano/Micro Technology - Rapid Prototyping and Manufacturing - Measurements and Control Surveys and reviews will also be planned in consultation with the Editorial Board.
期刊最新文献
The Impact of Contralateral Cane Placement on the External Knee Adduction Moment Piecewise Modification of Cycloidal Gear in RV Reducer: Application of Spline Interpolation Theory and Comparison with a Combination Modification Optimization Method Equivalent Error Based Modelling for Prediction and Analysis of Measuring Accuracy in 3-Axis FXYZ Coordinate Measuring Machines from Position, Repeatability and Reversibility Errors Experimental Study on Superplastic Forming for Inconel 718 Alloy Bipolar Plate A Comprehensive Evaluation Method for Generalized Reliability of CNC Machine Tools Based on Improved Entropy-Weighted Extensible Matter-Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1