{"title":"从内部时空推导第一代粒子质量","authors":"Charlie Beil","doi":"arxiv-2405.15522","DOIUrl":null,"url":null,"abstract":"Internal spacetime geometry was recently introduced to model certain quantum\nphenomena using spacetime metrics that are degenerate. We use the Ricci tensors\nof these metrics to derive a ratio of the bare up and down quark masses,\nobtaining $m_u/m_d = 9604/19683 \\approx .4879$. This value is within the\nlattice QCD value at $2 \\operatorname{GeV}$ in the\n$\\overline{\\operatorname{MS}}$-scheme, $.473 \\pm .023$. Moreover, using the\nLevi-Cevita Poisson equation, we derive ratios of the dressed electron mass and\nbare quark masses. For a dressed electron mass of $.511 \\operatorname{MeV}$,\nthese ratios yield the bare quark masses $m_u \\approx 2.2440\n\\operatorname{MeV}$ and $m_d \\approx 4.599 \\operatorname{MeV}$, which are\nwithin/near the lattice QCD values $m^{\\overline{\\operatorname{MS}}}_u =\n(2.20\\pm .10) \\operatorname{MeV}$ and $m^{\\overline{\\operatorname{MS}}}_d =\n(4.69 \\pm .07) \\operatorname{MeV}$. Finally, using $4$-accelerations, we derive\nthe ratio $\\tilde{m}_u/\\tilde{m}_d = 48/49 \\approx .98$ of the constituent up\nand down quark masses. This value is within the $.97 \\sim 1$ range of\nconstituent quark models. All of the ratios we obtain are from first principles\nalone, with no free or ad hoc parameters. Furthermore, and rather curiously,\nour derivations do not use quantum field theory, but only tools from general\nrelativity.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A derivation of the first generation particle masses from internal spacetime\",\"authors\":\"Charlie Beil\",\"doi\":\"arxiv-2405.15522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal spacetime geometry was recently introduced to model certain quantum\\nphenomena using spacetime metrics that are degenerate. We use the Ricci tensors\\nof these metrics to derive a ratio of the bare up and down quark masses,\\nobtaining $m_u/m_d = 9604/19683 \\\\approx .4879$. This value is within the\\nlattice QCD value at $2 \\\\operatorname{GeV}$ in the\\n$\\\\overline{\\\\operatorname{MS}}$-scheme, $.473 \\\\pm .023$. Moreover, using the\\nLevi-Cevita Poisson equation, we derive ratios of the dressed electron mass and\\nbare quark masses. For a dressed electron mass of $.511 \\\\operatorname{MeV}$,\\nthese ratios yield the bare quark masses $m_u \\\\approx 2.2440\\n\\\\operatorname{MeV}$ and $m_d \\\\approx 4.599 \\\\operatorname{MeV}$, which are\\nwithin/near the lattice QCD values $m^{\\\\overline{\\\\operatorname{MS}}}_u =\\n(2.20\\\\pm .10) \\\\operatorname{MeV}$ and $m^{\\\\overline{\\\\operatorname{MS}}}_d =\\n(4.69 \\\\pm .07) \\\\operatorname{MeV}$. Finally, using $4$-accelerations, we derive\\nthe ratio $\\\\tilde{m}_u/\\\\tilde{m}_d = 48/49 \\\\approx .98$ of the constituent up\\nand down quark masses. This value is within the $.97 \\\\sim 1$ range of\\nconstituent quark models. All of the ratios we obtain are from first principles\\nalone, with no free or ad hoc parameters. Furthermore, and rather curiously,\\nour derivations do not use quantum field theory, but only tools from general\\nrelativity.\",\"PeriodicalId\":501190,\"journal\":{\"name\":\"arXiv - PHYS - General Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A derivation of the first generation particle masses from internal spacetime
Internal spacetime geometry was recently introduced to model certain quantum
phenomena using spacetime metrics that are degenerate. We use the Ricci tensors
of these metrics to derive a ratio of the bare up and down quark masses,
obtaining $m_u/m_d = 9604/19683 \approx .4879$. This value is within the
lattice QCD value at $2 \operatorname{GeV}$ in the
$\overline{\operatorname{MS}}$-scheme, $.473 \pm .023$. Moreover, using the
Levi-Cevita Poisson equation, we derive ratios of the dressed electron mass and
bare quark masses. For a dressed electron mass of $.511 \operatorname{MeV}$,
these ratios yield the bare quark masses $m_u \approx 2.2440
\operatorname{MeV}$ and $m_d \approx 4.599 \operatorname{MeV}$, which are
within/near the lattice QCD values $m^{\overline{\operatorname{MS}}}_u =
(2.20\pm .10) \operatorname{MeV}$ and $m^{\overline{\operatorname{MS}}}_d =
(4.69 \pm .07) \operatorname{MeV}$. Finally, using $4$-accelerations, we derive
the ratio $\tilde{m}_u/\tilde{m}_d = 48/49 \approx .98$ of the constituent up
and down quark masses. This value is within the $.97 \sim 1$ range of
constituent quark models. All of the ratios we obtain are from first principles
alone, with no free or ad hoc parameters. Furthermore, and rather curiously,
our derivations do not use quantum field theory, but only tools from general
relativity.