基于博弈论效益的铁路物联网多层网络拓扑优化策略研究

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2024-05-28 DOI:10.3389/fphy.2024.1409427
Fang Wang, Kaixuan Su, Bo Liang, Jian Yao, Wei Bai
{"title":"基于博弈论效益的铁路物联网多层网络拓扑优化策略研究","authors":"Fang Wang, Kaixuan Su, Bo Liang, Jian Yao, Wei Bai","doi":"10.3389/fphy.2024.1409427","DOIUrl":null,"url":null,"abstract":"In the railway system environment, the interconnection of a vast array of intelligent sensing devices has brought about revolutionary changes in the management and monitoring of railway transportation. However, this also poses challenges to the communication service quality within the railway Internet of Things (IoT). Through collective intelligence and collaboration, the nodes within the railway IoT can not only share data and information but also work synergistically to enhance the overall intelligence level and improve decision-making quality of the network. Therefore, this paper proposes a reconnection mechanism based on the computation of node game-theoretic benefits and optimizes this process with the concept of swarm intelligence collaboration. Initially, the game-theoretic benefit values of the nodes in the railway IoT network are calculated. Subsequently, based on the weight priority of the edges, the two edges with the larger weights are selected, and connections are established between nodes with similar game-theoretic benefit values to enhance the network’s robustness. This approach enables rapid networking and efficient communication transmission within the railway IoT, providing robust assurance for the safe and stable operation of the railway.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on multi-layer network topology optimization strategy for railway internet of things based on game theory benefits\",\"authors\":\"Fang Wang, Kaixuan Su, Bo Liang, Jian Yao, Wei Bai\",\"doi\":\"10.3389/fphy.2024.1409427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the railway system environment, the interconnection of a vast array of intelligent sensing devices has brought about revolutionary changes in the management and monitoring of railway transportation. However, this also poses challenges to the communication service quality within the railway Internet of Things (IoT). Through collective intelligence and collaboration, the nodes within the railway IoT can not only share data and information but also work synergistically to enhance the overall intelligence level and improve decision-making quality of the network. Therefore, this paper proposes a reconnection mechanism based on the computation of node game-theoretic benefits and optimizes this process with the concept of swarm intelligence collaboration. Initially, the game-theoretic benefit values of the nodes in the railway IoT network are calculated. Subsequently, based on the weight priority of the edges, the two edges with the larger weights are selected, and connections are established between nodes with similar game-theoretic benefit values to enhance the network’s robustness. This approach enables rapid networking and efficient communication transmission within the railway IoT, providing robust assurance for the safe and stable operation of the railway.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1409427\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1409427","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在铁路系统环境中,大量智能传感设备的互联给铁路运输的管理和监控带来了革命性的变化。然而,这也对铁路物联网(IoT)内的通信服务质量提出了挑战。通过集体智能和协作,铁路物联网内的节点不仅可以共享数据和信息,还可以协同工作,以提高网络的整体智能水平和决策质量。因此,本文提出了一种基于节点博弈论收益计算的重连接机制,并以蜂群智能协作的理念对这一过程进行优化。首先,计算铁路物联网网络中节点的博弈论收益值。随后,根据边的权重优先级,选择权重较大的两条边,并在博弈论效益值相近的节点之间建立连接,以增强网络的鲁棒性。这种方法可以实现铁路物联网内部的快速联网和高效通信传输,为铁路的安全稳定运行提供有力保障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on multi-layer network topology optimization strategy for railway internet of things based on game theory benefits
In the railway system environment, the interconnection of a vast array of intelligent sensing devices has brought about revolutionary changes in the management and monitoring of railway transportation. However, this also poses challenges to the communication service quality within the railway Internet of Things (IoT). Through collective intelligence and collaboration, the nodes within the railway IoT can not only share data and information but also work synergistically to enhance the overall intelligence level and improve decision-making quality of the network. Therefore, this paper proposes a reconnection mechanism based on the computation of node game-theoretic benefits and optimizes this process with the concept of swarm intelligence collaboration. Initially, the game-theoretic benefit values of the nodes in the railway IoT network are calculated. Subsequently, based on the weight priority of the edges, the two edges with the larger weights are selected, and connections are established between nodes with similar game-theoretic benefit values to enhance the network’s robustness. This approach enables rapid networking and efficient communication transmission within the railway IoT, providing robust assurance for the safe and stable operation of the railway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
A modular torso phantom featuring a pneumatic stepper and flow for MR sequence development Dual chiral structures in the cuticle of Protaetia mirifica analyzed with Mueller matrix spectroscopic ellipsometry Erratum: Anomalous Hall effects in chiral superconductors Quasi-position vector curves in Galilean 4-space Low gain avalanche diodes for photon science applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1