Jason J. Kwon, Joshua Pan, Guadalupe Gonzalez, William C. Hahn, Marinka Zitnik
{"title":"认识基因基因功能分布假说","authors":"Jason J. Kwon, Joshua Pan, Guadalupe Gonzalez, William C. Hahn, Marinka Zitnik","doi":"10.1016/j.cels.2024.04.008","DOIUrl":null,"url":null,"abstract":"<p>As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as “is-a” relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"6 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On knowing a gene: A distributional hypothesis of gene function\",\"authors\":\"Jason J. Kwon, Joshua Pan, Guadalupe Gonzalez, William C. Hahn, Marinka Zitnik\",\"doi\":\"10.1016/j.cels.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as “is-a” relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.04.008\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.04.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
On knowing a gene: A distributional hypothesis of gene function
As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as “is-a” relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.