{"title":"影响轨道车辆接触面摩擦系数增大的主要因素研究","authors":"A. M. Keropyan, A. Yu. Albagachiev","doi":"10.1134/S1052618824700055","DOIUrl":null,"url":null,"abstract":"<p>As a result of theoretical studies, it was established that the coefficient of friction of the interacting surfaces of rail vehicles is significantly influenced by the roughness of the contacting surfaces, the actual contact area, the temperature in the contact zone of the wheel-rail system, and the speed of mutual sliding (slip) of the contacting surfaces. It has been established that, in order to ensure the strength criterion and reduce wear, it is necessary to limit the temperature in the contact zone of the wheel–rail system within 300°С by controlling the sliding speed of the wheel relative to the rail. It has been revealed that the effective functioning of the wheel–rail system can be realized through the interaction of the machined working surfaces of the wheel and rail with roughness <i>Rz</i> 20–40 µm. Implementation of the proposed technical solutions using tribological research methods will allow for the possibility of increasing the friction coefficient of wheel–rail systems by up to 27%.</p>","PeriodicalId":642,"journal":{"name":"Journal of Machinery Manufacture and Reliability","volume":"53 3","pages":"208 - 211"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Main Factors Affecting the Increase in the Friction Coefficient of Interacting Surfaces of Rail Vehicles\",\"authors\":\"A. M. Keropyan, A. Yu. Albagachiev\",\"doi\":\"10.1134/S1052618824700055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a result of theoretical studies, it was established that the coefficient of friction of the interacting surfaces of rail vehicles is significantly influenced by the roughness of the contacting surfaces, the actual contact area, the temperature in the contact zone of the wheel-rail system, and the speed of mutual sliding (slip) of the contacting surfaces. It has been established that, in order to ensure the strength criterion and reduce wear, it is necessary to limit the temperature in the contact zone of the wheel–rail system within 300°С by controlling the sliding speed of the wheel relative to the rail. It has been revealed that the effective functioning of the wheel–rail system can be realized through the interaction of the machined working surfaces of the wheel and rail with roughness <i>Rz</i> 20–40 µm. Implementation of the proposed technical solutions using tribological research methods will allow for the possibility of increasing the friction coefficient of wheel–rail systems by up to 27%.</p>\",\"PeriodicalId\":642,\"journal\":{\"name\":\"Journal of Machinery Manufacture and Reliability\",\"volume\":\"53 3\",\"pages\":\"208 - 211\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machinery Manufacture and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1052618824700055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machinery Manufacture and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1052618824700055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study of the Main Factors Affecting the Increase in the Friction Coefficient of Interacting Surfaces of Rail Vehicles
As a result of theoretical studies, it was established that the coefficient of friction of the interacting surfaces of rail vehicles is significantly influenced by the roughness of the contacting surfaces, the actual contact area, the temperature in the contact zone of the wheel-rail system, and the speed of mutual sliding (slip) of the contacting surfaces. It has been established that, in order to ensure the strength criterion and reduce wear, it is necessary to limit the temperature in the contact zone of the wheel–rail system within 300°С by controlling the sliding speed of the wheel relative to the rail. It has been revealed that the effective functioning of the wheel–rail system can be realized through the interaction of the machined working surfaces of the wheel and rail with roughness Rz 20–40 µm. Implementation of the proposed technical solutions using tribological research methods will allow for the possibility of increasing the friction coefficient of wheel–rail systems by up to 27%.
期刊介绍:
Journal of Machinery Manufacture and Reliability is devoted to advances in machine design; CAD/CAM; experimental mechanics of machines, machine life expectancy, and reliability studies; machine dynamics and kinematics; vibration, acoustics, and stress/strain; wear resistance engineering; real-time machine operation diagnostics; robotic systems; new materials and manufacturing processes, and other topics.