{"title":"利用基于深度学习的信号处理诊断电动汽车变速箱轴承故障","authors":"Kicheol Jeong, Chulwoo Moon","doi":"10.1007/s12239-024-00094-8","DOIUrl":null,"url":null,"abstract":"<p>The gearbox of an electric vehicle operates under the high load torque and axial load of electric vehicles. In particular, the bearings that support the shaft of the gearbox are subjected to several tons of axial load, and as the mileage increases, fault occurs on bearing rolling elements frequently. Such bearing fault has a serious impact on driving comfort and vehicle safety, however, bearing faults are diagnosed by human experts nowadays, and algorithm-based electric vehicle bearing fault diagnosis has not been implemented. Therefore, in this paper, a deep learning-based bearing vibration signal processing method to diagnose bearing fault in electric vehicle gearboxes is proposed. The proposed method consists of a deep neural network learning stage and an application stage of the pre-trained neural network. In the deep neural network learning stage, supervised learning is carried out based on two acceleration sensors. In the neural network application stage, signal processing of a single accelerometer signal is performed through a pre-trained neural network. In conclusion, the pre-trained neural network makes bearing fault signals stand out and can utilize these signals to extract frequency characteristics of bearing fault.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of EV Gearbox Bearing Fault Using Deep Learning-Based Signal Processing\",\"authors\":\"Kicheol Jeong, Chulwoo Moon\",\"doi\":\"10.1007/s12239-024-00094-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gearbox of an electric vehicle operates under the high load torque and axial load of electric vehicles. In particular, the bearings that support the shaft of the gearbox are subjected to several tons of axial load, and as the mileage increases, fault occurs on bearing rolling elements frequently. Such bearing fault has a serious impact on driving comfort and vehicle safety, however, bearing faults are diagnosed by human experts nowadays, and algorithm-based electric vehicle bearing fault diagnosis has not been implemented. Therefore, in this paper, a deep learning-based bearing vibration signal processing method to diagnose bearing fault in electric vehicle gearboxes is proposed. The proposed method consists of a deep neural network learning stage and an application stage of the pre-trained neural network. In the deep neural network learning stage, supervised learning is carried out based on two acceleration sensors. In the neural network application stage, signal processing of a single accelerometer signal is performed through a pre-trained neural network. In conclusion, the pre-trained neural network makes bearing fault signals stand out and can utilize these signals to extract frequency characteristics of bearing fault.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00094-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00094-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diagnosis of EV Gearbox Bearing Fault Using Deep Learning-Based Signal Processing
The gearbox of an electric vehicle operates under the high load torque and axial load of electric vehicles. In particular, the bearings that support the shaft of the gearbox are subjected to several tons of axial load, and as the mileage increases, fault occurs on bearing rolling elements frequently. Such bearing fault has a serious impact on driving comfort and vehicle safety, however, bearing faults are diagnosed by human experts nowadays, and algorithm-based electric vehicle bearing fault diagnosis has not been implemented. Therefore, in this paper, a deep learning-based bearing vibration signal processing method to diagnose bearing fault in electric vehicle gearboxes is proposed. The proposed method consists of a deep neural network learning stage and an application stage of the pre-trained neural network. In the deep neural network learning stage, supervised learning is carried out based on two acceleration sensors. In the neural network application stage, signal processing of a single accelerometer signal is performed through a pre-trained neural network. In conclusion, the pre-trained neural network makes bearing fault signals stand out and can utilize these signals to extract frequency characteristics of bearing fault.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.