联合估算器相对于两阶段估算器的渐近效率(在未指定的似然条件下

Doosoo Kim
{"title":"联合估算器相对于两阶段估算器的渐近效率(在未指定的似然条件下","authors":"Doosoo Kim","doi":"10.1515/snde-2023-0009","DOIUrl":null,"url":null,"abstract":"The two-stage estimator is often more tractable when there are nuisance parameters that can be separately estimated and plugged into an objective function. The joint estimator tends to bear the higher computational cost since it estimates all parameters in one stage by optimizing the sum of objective functions used in the two stages. It is well-known that the joint estimator is asymptotically more efficient than the two-stage estimator if the objective function is the true log-likelihood. When the objective function is not the true log-likelihood, I show that the relative asymptotic efficiency of the joint estimator still holds under a finite number of testable moment conditions. The implications of the main result on models based on quasi-limited information likelihoods are discussed.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Efficiency of Joint Estimator Relative to Two-Stage Estimator Under Misspecified Likelihoods\",\"authors\":\"Doosoo Kim\",\"doi\":\"10.1515/snde-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-stage estimator is often more tractable when there are nuisance parameters that can be separately estimated and plugged into an objective function. The joint estimator tends to bear the higher computational cost since it estimates all parameters in one stage by optimizing the sum of objective functions used in the two stages. It is well-known that the joint estimator is asymptotically more efficient than the two-stage estimator if the objective function is the true log-likelihood. When the objective function is not the true log-likelihood, I show that the relative asymptotic efficiency of the joint estimator still holds under a finite number of testable moment conditions. The implications of the main result on models based on quasi-limited information likelihoods are discussed.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当存在可分别估算并插入目标函数的干扰参数时,两阶段估算法往往更为简便。联合估计法往往计算成本较高,因为它通过优化两个阶段所用目标函数之和,在一个阶段内估计所有参数。众所周知,如果目标函数是真实的对数似然,联合估计法在渐近上比两阶段估计法更有效。当目标函数不是真实对数似然时,我证明了在有限数量的可检验矩条件下,联合估计器的相对渐近效率仍然成立。本文还讨论了主要结果对基于准有限信息似然的模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic Efficiency of Joint Estimator Relative to Two-Stage Estimator Under Misspecified Likelihoods
The two-stage estimator is often more tractable when there are nuisance parameters that can be separately estimated and plugged into an objective function. The joint estimator tends to bear the higher computational cost since it estimates all parameters in one stage by optimizing the sum of objective functions used in the two stages. It is well-known that the joint estimator is asymptotically more efficient than the two-stage estimator if the objective function is the true log-likelihood. When the objective function is not the true log-likelihood, I show that the relative asymptotic efficiency of the joint estimator still holds under a finite number of testable moment conditions. The implications of the main result on models based on quasi-limited information likelihoods are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1