{"title":"现象学、透视学和(量子)物理学","authors":"Steven French","doi":"10.1007/s10701-024-00769-3","DOIUrl":null,"url":null,"abstract":"<div><p>It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism will then lead to a consideration of the much-maligned and typically dismissed role of the observer in the measurement process. This opens the door to London and Bauer’s presentation of a form of ‘phenomenological quantum perspectivalism’ that brings together Massimi’s two forms and explicitly eschews the ‘naïve’ realism that creates the above tension. I shall conclude with some reflections on how intersubjectivity can still be established within this framework, focusing in particular on how Massimi’s idea of ‘interlacing’ scientific perspectives can be accommodated, using the example of a ‘new cosmopolitanism’ that gave rise to Bose-Einstein statistics.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00769-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Phenomenology, Perspectivalism and (Quantum) Physics\",\"authors\":\"Steven French\",\"doi\":\"10.1007/s10701-024-00769-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism will then lead to a consideration of the much-maligned and typically dismissed role of the observer in the measurement process. This opens the door to London and Bauer’s presentation of a form of ‘phenomenological quantum perspectivalism’ that brings together Massimi’s two forms and explicitly eschews the ‘naïve’ realism that creates the above tension. I shall conclude with some reflections on how intersubjectivity can still be established within this framework, focusing in particular on how Massimi’s idea of ‘interlacing’ scientific perspectives can be accommodated, using the example of a ‘new cosmopolitanism’ that gave rise to Bose-Einstein statistics.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-024-00769-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00769-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00769-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Phenomenology, Perspectivalism and (Quantum) Physics
It has been claimed that Massimi’s recent perspectival approach to science sits in tension with a realist stance. I shall argue that this tension can be defused in the quantum context by recasting Massimi’s perspectivalism within a phenomenological framework. I shall begin by indicating how the different but complementary forms of the former are manifested in the distinction between certain so-called ‘-epistemic’ and ‘-ontic’ understandings of quantum mechanics, namely QBism and Relational Quantum Mechanics, respectively. A brief consideration of Dieks’ perspectivism will then lead to a consideration of the much-maligned and typically dismissed role of the observer in the measurement process. This opens the door to London and Bauer’s presentation of a form of ‘phenomenological quantum perspectivalism’ that brings together Massimi’s two forms and explicitly eschews the ‘naïve’ realism that creates the above tension. I shall conclude with some reflections on how intersubjectivity can still be established within this framework, focusing in particular on how Massimi’s idea of ‘interlacing’ scientific perspectives can be accommodated, using the example of a ‘new cosmopolitanism’ that gave rise to Bose-Einstein statistics.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.