{"title":"利用深度学习和评分机制在西瓜籽分类中应用高光谱成像技术","authors":"Hengnian Qi, Mengbo He, Zihong Huang, Jianfang Yan, Chu Zhang","doi":"10.1155/2024/7313214","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Watermelon seeds are a significant source of nutrition in the diet. To assess the potential of near-infrared hyperspectral imaging technology for swift and nondestructive identification of watermelon seed varieties, near-infrared hyperspectral imaging (NIR-HSI) technology was used. The Savitzky–Golay (SG) smoothing algorithm and standard normal variable (SNV) algorithm were combined to preprocess the extracted spectral data. The successive projections algorithm (SPA) was used to reduce the dimensionality of the spectral data. Subsequently, three deep learning models (LeNet, GoogLeNet, and ResNet) were used to classify 10 common watermelon seeds. SPA was used to reduce the dimensionality of hyperspectral data. In terms of full band, the ResNet model achieved a classification accuracy of 86.77% on the test set. By using characteristic bands, the GoogLeNet model achieved a classification accuracy of 83.85% on the test set. The ensemble fusion model based on a scoring mechanism achieved accuracy rates of 99.56%, 90.88%, and 87.97% on the training, validation, and test sets, respectively. The results indicated that the ensemble fusion model based on a scoring mechanism can enhance accuracy. Combining deep learning with NIR-HSI can effectively distinguish different varieties of watermelon seeds.</p>\n </div>","PeriodicalId":15951,"journal":{"name":"Journal of Food Quality","volume":"2024 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7313214","citationCount":"0","resultStr":"{\"title\":\"Application of Hyperspectral Imaging for Watermelon Seed Classification Using Deep Learning and Scoring Mechanism\",\"authors\":\"Hengnian Qi, Mengbo He, Zihong Huang, Jianfang Yan, Chu Zhang\",\"doi\":\"10.1155/2024/7313214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Watermelon seeds are a significant source of nutrition in the diet. To assess the potential of near-infrared hyperspectral imaging technology for swift and nondestructive identification of watermelon seed varieties, near-infrared hyperspectral imaging (NIR-HSI) technology was used. The Savitzky–Golay (SG) smoothing algorithm and standard normal variable (SNV) algorithm were combined to preprocess the extracted spectral data. The successive projections algorithm (SPA) was used to reduce the dimensionality of the spectral data. Subsequently, three deep learning models (LeNet, GoogLeNet, and ResNet) were used to classify 10 common watermelon seeds. SPA was used to reduce the dimensionality of hyperspectral data. In terms of full band, the ResNet model achieved a classification accuracy of 86.77% on the test set. By using characteristic bands, the GoogLeNet model achieved a classification accuracy of 83.85% on the test set. The ensemble fusion model based on a scoring mechanism achieved accuracy rates of 99.56%, 90.88%, and 87.97% on the training, validation, and test sets, respectively. The results indicated that the ensemble fusion model based on a scoring mechanism can enhance accuracy. Combining deep learning with NIR-HSI can effectively distinguish different varieties of watermelon seeds.</p>\\n </div>\",\"PeriodicalId\":15951,\"journal\":{\"name\":\"Journal of Food Quality\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7313214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Quality\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7313214\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7313214","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Application of Hyperspectral Imaging for Watermelon Seed Classification Using Deep Learning and Scoring Mechanism
Watermelon seeds are a significant source of nutrition in the diet. To assess the potential of near-infrared hyperspectral imaging technology for swift and nondestructive identification of watermelon seed varieties, near-infrared hyperspectral imaging (NIR-HSI) technology was used. The Savitzky–Golay (SG) smoothing algorithm and standard normal variable (SNV) algorithm were combined to preprocess the extracted spectral data. The successive projections algorithm (SPA) was used to reduce the dimensionality of the spectral data. Subsequently, three deep learning models (LeNet, GoogLeNet, and ResNet) were used to classify 10 common watermelon seeds. SPA was used to reduce the dimensionality of hyperspectral data. In terms of full band, the ResNet model achieved a classification accuracy of 86.77% on the test set. By using characteristic bands, the GoogLeNet model achieved a classification accuracy of 83.85% on the test set. The ensemble fusion model based on a scoring mechanism achieved accuracy rates of 99.56%, 90.88%, and 87.97% on the training, validation, and test sets, respectively. The results indicated that the ensemble fusion model based on a scoring mechanism can enhance accuracy. Combining deep learning with NIR-HSI can effectively distinguish different varieties of watermelon seeds.
期刊介绍:
Journal of Food Quality is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles related to all aspects of food quality characteristics acceptable to consumers. The journal aims to provide a valuable resource for food scientists, nutritionists, food producers, the public health sector, and governmental and non-governmental agencies with an interest in food quality.