通过微纤维陶瓷羊毛中的水运动和表面离子收集能量

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-05-26 DOI:10.1002/eem2.12760
Manpreet Kaur, Avinash Alagumalai, Omid Mahian, Sameh M. Osman, Tadaaki Nagao, Zhonglin Wang
{"title":"通过微纤维陶瓷羊毛中的水运动和表面离子收集能量","authors":"Manpreet Kaur,&nbsp;Avinash Alagumalai,&nbsp;Omid Mahian,&nbsp;Sameh M. Osman,&nbsp;Tadaaki Nagao,&nbsp;Zhonglin Wang","doi":"10.1002/eem2.12760","DOIUrl":null,"url":null,"abstract":"<p>Due to the push for carbon neutrality in various human activities, the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant. Also, the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents. To address this challenge, our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation. The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer. This occurrence bears resemblance to the natural water transpiration in plants, thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner. The generator module demonstrated in this study, measuring 12 × 6 cm<sup>2</sup>, exhibited a noteworthy open-circuit voltage of 0.35 V, coupled with a short-circuit current of 0.51 mA. Such low-cost ceramic wools are suitable for ubiquitous, permanent energy sources and hold potential for use as self-powered sensors and systems, eliminating the requirement for external energy sources such as sunlight or heat.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12760","citationCount":"0","resultStr":"{\"title\":\"Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools\",\"authors\":\"Manpreet Kaur,&nbsp;Avinash Alagumalai,&nbsp;Omid Mahian,&nbsp;Sameh M. Osman,&nbsp;Tadaaki Nagao,&nbsp;Zhonglin Wang\",\"doi\":\"10.1002/eem2.12760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the push for carbon neutrality in various human activities, the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant. Also, the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents. To address this challenge, our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation. The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer. This occurrence bears resemblance to the natural water transpiration in plants, thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner. The generator module demonstrated in this study, measuring 12 × 6 cm<sup>2</sup>, exhibited a noteworthy open-circuit voltage of 0.35 V, coupled with a short-circuit current of 0.51 mA. Such low-cost ceramic wools are suitable for ubiquitous, permanent energy sources and hold potential for use as self-powered sensors and systems, eliminating the requirement for external energy sources such as sunlight or heat.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12760\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12760\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12760","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于各种人类活动都在推动碳中和,开发不依赖化学反应过程或热源的发电方法已变得非常重要。此外,由于材料固有的导电性和电流分流,实现微瓦级输出也是一个挑战。为了应对这一挑战,我们的研究集中于利用非导电介质,将水基低成本微纤维陶瓷棉与氯化钠水溶液结合起来进行发电。电能的主要来源是水分子和表面离子在动态双电层的作用下通过密集的微纤维陶瓷棉的定向运动。这种现象与植物的自然水分蒸腾作用十分相似,从而为环保发电提供了一种新颖而直接的方法。本研究中展示的发电机模块尺寸为 12 × 6 cm2,开路电压为 0.35 V,短路电流为 0.51 mA。这种低成本陶瓷棉适用于无处不在的永久性能源,并有望用作自供电传感器和系统,从而消除对阳光或热量等外部能源的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools

Due to the push for carbon neutrality in various human activities, the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant. Also, the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents. To address this challenge, our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation. The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer. This occurrence bears resemblance to the natural water transpiration in plants, thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner. The generator module demonstrated in this study, measuring 12 × 6 cm2, exhibited a noteworthy open-circuit voltage of 0.35 V, coupled with a short-circuit current of 0.51 mA. Such low-cost ceramic wools are suitable for ubiquitous, permanent energy sources and hold potential for use as self-powered sensors and systems, eliminating the requirement for external energy sources such as sunlight or heat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Issue Information Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1