{"title":"栖息地丧失(而非破碎化)对枯木栖息地草本植物的时滞效应","authors":"Aino Hämäläinen, Lenore Fahrig","doi":"10.1007/s10980-024-01910-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Landscape habitat amount is known to increase biodiversity, while the effects of habitat fragmentation are still debated. It has been suggested that negative fragmentation effects may occur with a time lag, which could explain inconsistent results. However, there is so far no empirical support for this idea.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>We evaluated whether habitat amount and fragmentation at the landscape scale affect the species density of deadwood-dwelling lichens, and whether these effects occur with a time lag.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We surveyed deadwood-dwelling lichens in woodland key habitats in two regions in northern Sweden, and modelled their species density as a function of past (1960s) and present (2010s) habitat amount (old forest area) and fragmentation (edge density) in the surrounding landscapes.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Present habitat amount generally had weak positive effects on lichen species density. Positive effects of the past habitat amount were stronger, indicating a time lag in habitat amount effects. Habitat fragmentation effects were generally weak and similar whether fragmentation was measured in the past or the present landscapes, indicating no time lag in fragmentation effects.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>We found a time lag effect of habitat amount, but not fragmentation. This result is not consistent with suggestions that time lags explain the mixed observations of fragmentation effects. Time-lag effects of habitat amount suggest that the studied lichen communities face an extinction debt. Conservation should therefore prioritize increasing the amount of old forest, for example by creating forest reserves, to maintain the current lichen diversity. More generally, our results imply that studies examining only the present habitat amount risk under-estimating its importance.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"48 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-lag effects of habitat loss, but not fragmentation, on deadwood-dwelling lichens\",\"authors\":\"Aino Hämäläinen, Lenore Fahrig\",\"doi\":\"10.1007/s10980-024-01910-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Context</h3><p>Landscape habitat amount is known to increase biodiversity, while the effects of habitat fragmentation are still debated. It has been suggested that negative fragmentation effects may occur with a time lag, which could explain inconsistent results. However, there is so far no empirical support for this idea.</p><h3 data-test=\\\"abstract-sub-heading\\\">Objectives</h3><p>We evaluated whether habitat amount and fragmentation at the landscape scale affect the species density of deadwood-dwelling lichens, and whether these effects occur with a time lag.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We surveyed deadwood-dwelling lichens in woodland key habitats in two regions in northern Sweden, and modelled their species density as a function of past (1960s) and present (2010s) habitat amount (old forest area) and fragmentation (edge density) in the surrounding landscapes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Present habitat amount generally had weak positive effects on lichen species density. Positive effects of the past habitat amount were stronger, indicating a time lag in habitat amount effects. Habitat fragmentation effects were generally weak and similar whether fragmentation was measured in the past or the present landscapes, indicating no time lag in fragmentation effects.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>We found a time lag effect of habitat amount, but not fragmentation. This result is not consistent with suggestions that time lags explain the mixed observations of fragmentation effects. Time-lag effects of habitat amount suggest that the studied lichen communities face an extinction debt. Conservation should therefore prioritize increasing the amount of old forest, for example by creating forest reserves, to maintain the current lichen diversity. More generally, our results imply that studies examining only the present habitat amount risk under-estimating its importance.</p>\",\"PeriodicalId\":54745,\"journal\":{\"name\":\"Landscape Ecology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landscape Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10980-024-01910-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10980-024-01910-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Time-lag effects of habitat loss, but not fragmentation, on deadwood-dwelling lichens
Context
Landscape habitat amount is known to increase biodiversity, while the effects of habitat fragmentation are still debated. It has been suggested that negative fragmentation effects may occur with a time lag, which could explain inconsistent results. However, there is so far no empirical support for this idea.
Objectives
We evaluated whether habitat amount and fragmentation at the landscape scale affect the species density of deadwood-dwelling lichens, and whether these effects occur with a time lag.
Methods
We surveyed deadwood-dwelling lichens in woodland key habitats in two regions in northern Sweden, and modelled their species density as a function of past (1960s) and present (2010s) habitat amount (old forest area) and fragmentation (edge density) in the surrounding landscapes.
Results
Present habitat amount generally had weak positive effects on lichen species density. Positive effects of the past habitat amount were stronger, indicating a time lag in habitat amount effects. Habitat fragmentation effects were generally weak and similar whether fragmentation was measured in the past or the present landscapes, indicating no time lag in fragmentation effects.
Conclusions
We found a time lag effect of habitat amount, but not fragmentation. This result is not consistent with suggestions that time lags explain the mixed observations of fragmentation effects. Time-lag effects of habitat amount suggest that the studied lichen communities face an extinction debt. Conservation should therefore prioritize increasing the amount of old forest, for example by creating forest reserves, to maintain the current lichen diversity. More generally, our results imply that studies examining only the present habitat amount risk under-estimating its importance.
期刊介绍:
Landscape Ecology is the flagship journal of a well-established and rapidly developing interdisciplinary science that focuses explicitly on the ecological understanding of spatial heterogeneity. Landscape Ecology draws together expertise from both biophysical and socioeconomic sciences to explore basic and applied research questions concerning the ecology, conservation, management, design/planning, and sustainability of landscapes as coupled human-environment systems. Landscape ecology studies are characterized by spatially explicit methods in which spatial attributes and arrangements of landscape elements are directly analyzed and related to ecological processes.