一种来自西印度群岛格林纳达沼泽古比鱼 Micropoecilia picta 的新型神经性小孢子虫。

IF 1.1 4区 农林科学 Q3 FISHERIES Diseases of aquatic organisms Pub Date : 2024-05-30 DOI:10.3354/dao03789
C J Schuster, D P Marancik, C E Couch, C Leong, J J Edwards, R M Kaplan, M L Kent
{"title":"一种来自西印度群岛格林纳达沼泽古比鱼 Micropoecilia picta 的新型神经性小孢子虫。","authors":"C J Schuster, D P Marancik, C E Couch, C Leong, J J Edwards, R M Kaplan, M L Kent","doi":"10.3354/dao03789","DOIUrl":null,"url":null,"abstract":"<p><p>A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"133-141"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies.\",\"authors\":\"C J Schuster, D P Marancik, C E Couch, C Leong, J J Edwards, R M Kaplan, M L Kent\",\"doi\":\"10.3354/dao03789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.</p>\",\"PeriodicalId\":11252,\"journal\":{\"name\":\"Diseases of aquatic organisms\",\"volume\":\"158 \",\"pages\":\"133-141\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases of aquatic organisms\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/dao03789\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03789","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

在西印度群岛格林纳达勒维拉国家公园勒维拉池塘的野生沼泽河鲦中观察到一种新型微孢子虫。初步观察结果表明,这种微孢子虫与斑马鱼Danio rerio的重要病原体Pseudoloma neurophilia很相似。P.neurophilia具有广泛的宿主特异性,包括Poecillidae科的成员,两种寄生虫都会感染中枢神经系统。然而,孢子形态学和基于 rDNA 的分子系统发育表明,沼泽古比鱼微孢子虫(SGM)有别于神经嗜血杆菌和相关的微孢子虫(脑微孢子虫和 M. luceopercae)。SGM 的孢子比该支系的其他孢子小(3.6 微米长)。在组织学方面也存在差异;SGM 在神经组织内形成大的孢子聚集体,同时在沿脑室间隙延伸至门下的表层组织内也有大量较小的聚集体和单孢子,而 P. neurophilia 和 M. cerebralis 则会感染到神经椎体深处并引起相关病变。对小亚基核糖体 DNA 序列的分析表明,SGM 是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies.

A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diseases of aquatic organisms
Diseases of aquatic organisms 农林科学-兽医学
CiteScore
3.10
自引率
0.00%
发文量
53
审稿时长
8-16 weeks
期刊介绍: DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically: -Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens -Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)- Diseases due to internal circumstances (innate, idiopathic, genetic)- Diseases due to proliferative disorders (neoplasms)- Disease diagnosis, treatment and prevention- Molecular aspects of diseases- Nutritional disorders- Stress and physical injuries- Epidemiology/epizootiology- Parasitology- Toxicology- Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)- Diseases as indicators of humanity''s detrimental impact on nature- Genomics, proteomics and metabolomics of disease- Immunology and disease prevention- Animal welfare- Zoonosis
期刊最新文献
Cold stress, heart failure, and esophageal occlusion cause the death of a West Indian manatee Trichechus manatus in Alabama, USA. Incidence of highly pathogenic avian influenza H5N1 in pinnipeds in Uruguay. Intentional harm in marine mammals stranded dead in the Adriatic Sea, Croatia, 1990-2023. Nitrogen gas-bubble disease in two giant salamanders. Polycystic ovarian disease in aquarium-managed cownose rays Rhinoptera bonasus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1