Eunhye Kim, Lian Cai, Hyerin Choi, Mirae Kim, Sang-Hwan Hyun
{"title":"从体细胞核移植猪囊胚建立的假定滋养层干细胞的不同特性","authors":"Eunhye Kim, Lian Cai, Hyerin Choi, Mirae Kim, Sang-Hwan Hyun","doi":"10.1186/s40659-024-00516-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities.</p><p><strong>Results: </strong>In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCs<sup>NT</sup> and TSCs<sup>IVF</sup>). Compared with the TSCs<sup>IVF</sup>, TSCs<sup>NT</sup> showed distinct expression patterns suggesting unique TSCs<sup>NT</sup> characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability.</p><p><strong>Conclusion: </strong>This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"35"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct properties of putative trophoblast stem cells established from somatic cell nuclear-transferred pig blastocysts.\",\"authors\":\"Eunhye Kim, Lian Cai, Hyerin Choi, Mirae Kim, Sang-Hwan Hyun\",\"doi\":\"10.1186/s40659-024-00516-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities.</p><p><strong>Results: </strong>In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCs<sup>NT</sup> and TSCs<sup>IVF</sup>). Compared with the TSCs<sup>IVF</sup>, TSCs<sup>NT</sup> showed distinct expression patterns suggesting unique TSCs<sup>NT</sup> characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability.</p><p><strong>Conclusion: </strong>This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"57 1\",\"pages\":\"35\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-024-00516-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00516-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Distinct properties of putative trophoblast stem cells established from somatic cell nuclear-transferred pig blastocysts.
Background: Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities.
Results: In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCsNT and TSCsIVF). Compared with the TSCsIVF, TSCsNT showed distinct expression patterns suggesting unique TSCsNT characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability.
Conclusion: This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.
期刊介绍:
Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.