三维红外扫描:神经成像探针空间配准的增强方法。

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2024-04-01 Epub Date: 2024-05-26 DOI:10.1117/1.NPh.11.2.024309
András Bálint, Christian Rummel, Marco Caversaccio, Stefan Weder
{"title":"三维红外扫描:神经成像探针空间配准的增强方法。","authors":"András Bálint, Christian Rummel, Marco Caversaccio, Stefan Weder","doi":"10.1117/1.NPh.11.2.024309","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations.</p><p><strong>Aim: </strong>This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use.</p><p><strong>Method: </strong>We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants.</p><p><strong>Results: </strong>Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies.</p><p><strong>Conclusions: </strong>The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 2","pages":"024309"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional infrared scanning: an enhanced approach for spatial registration of probes for neuroimaging.\",\"authors\":\"András Bálint, Christian Rummel, Marco Caversaccio, Stefan Weder\",\"doi\":\"10.1117/1.NPh.11.2.024309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations.</p><p><strong>Aim: </strong>This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use.</p><p><strong>Method: </strong>We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants.</p><p><strong>Results: </strong>Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies.</p><p><strong>Conclusions: </strong>The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 2\",\"pages\":\"024309\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.2.024309\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.2.024309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:在许多神经成像模式中,对用于测量大脑活动的探头(如光电二极管和电极)进行准确的空间配准是一个至关重要的方面。目的:本技术说明评估了市售红外三维(3D)扫描仪在实际实验(或临床)条件下的功效,并提供了使用指南:我们使用红外三维扫描仪记录探头位置,并与五名志愿参与者的磁共振成像(MRI)扫描结果进行对比验证:我们的分析表明,在标准帽固定的情况下,受试者探头位置的平均欧氏距离可达 43 毫米,平均距离为 15.25 毫米[标准差 (SD) = 8.0]。相比之下,红外三维扫描仪与核磁共振成像获取位置之间的平均距离为 5.69 毫米(标准差 = 1.73),而连续红外三维扫描之间的平均差异为 3.43 毫米(标准差 = 1.62)。光栅间距固定为 30 毫米,核磁共振成像测量结果为 29.28 毫米(标准差 = 1.12),红外三维扫描结果为 29.43 毫米(标准差 = 1.96)。我们的研究结果表明,所提出的空间配准方法具有很高的准确性和可重复性,因此适用于功能性近红外光谱仪和脑电图研究:用于探针空间配准的三维红外扫描技术具有经济高效、简单实用、可重复性强和准确度高等优点,可用于一系列神经成像应用。我们为匿名化、标记和后处理获取的扫描结果提供了实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional infrared scanning: an enhanced approach for spatial registration of probes for neuroimaging.

Significance: Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations.

Aim: This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use.

Method: We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants.

Results: Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies.

Conclusions: The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1