{"title":"将触觉学习转移到未经训练的身体部位:新出现的皮层机制","authors":"Sebastian M Frank","doi":"10.1177/10738584241256277","DOIUrl":null,"url":null,"abstract":"<p><p>Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as <i>tactile learning</i>. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584241256277"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms.\",\"authors\":\"Sebastian M Frank\",\"doi\":\"10.1177/10738584241256277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as <i>tactile learning</i>. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.</p>\",\"PeriodicalId\":49753,\"journal\":{\"name\":\"Neuroscientist\",\"volume\":\" \",\"pages\":\"10738584241256277\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscientist\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10738584241256277\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584241256277","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms.
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
期刊介绍:
Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.