选择性 SIRT3 抑制剂 3-TYP 通过降低 c-Myc 的稳定性抑制原发性骨髓瘤的生长

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2024-05-30 DOI:10.1021/acs.chemrestox.4c00142
Yindi Zeng, Yaxin zhang, Zeyu Cui, Jiwei Mao, Jinge Xu* and Ruosi Yao*, 
{"title":"选择性 SIRT3 抑制剂 3-TYP 通过降低 c-Myc 的稳定性抑制原发性骨髓瘤的生长","authors":"Yindi Zeng,&nbsp;Yaxin zhang,&nbsp;Zeyu Cui,&nbsp;Jiwei Mao,&nbsp;Jinge Xu* and Ruosi Yao*,&nbsp;","doi":"10.1021/acs.chemrestox.4c00142","DOIUrl":null,"url":null,"abstract":"<p >Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors. Thus, developing more highly active and specific inhibitors is urgent for myeloma-targeted therapy. In this study, we identified the SIRT3 inhibitor 3-TYP (3-(1<i>H</i>-1,2,3-triazol-4-yl) pyridine) after screening a histone modification compound library, which showed high cytotoxicity and induced DNA damage in myeloma cells. Furthermore, the inhibitory effect of 3-TYP in our xenograft tumor studies also confirmed that compound 3-TYP could inhibit primary myeloma growth by reducing c-Myc protein stability by decreasing c-Myc Ser62 phosphorylation levels. Taken together, the results of our study identified 3-TYP as a novel c-Myc inhibitor, which could be a potential chemotherapeutic agent to target multiple myeloma.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Selective SIRT3 Inhibitor 3-TYP Represses Primary Myeloma Growth by Reducing c-Myc Stability\",\"authors\":\"Yindi Zeng,&nbsp;Yaxin zhang,&nbsp;Zeyu Cui,&nbsp;Jiwei Mao,&nbsp;Jinge Xu* and Ruosi Yao*,&nbsp;\",\"doi\":\"10.1021/acs.chemrestox.4c00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors. Thus, developing more highly active and specific inhibitors is urgent for myeloma-targeted therapy. In this study, we identified the SIRT3 inhibitor 3-TYP (3-(1<i>H</i>-1,2,3-triazol-4-yl) pyridine) after screening a histone modification compound library, which showed high cytotoxicity and induced DNA damage in myeloma cells. Furthermore, the inhibitory effect of 3-TYP in our xenograft tumor studies also confirmed that compound 3-TYP could inhibit primary myeloma growth by reducing c-Myc protein stability by decreasing c-Myc Ser62 phosphorylation levels. Taken together, the results of our study identified 3-TYP as a novel c-Myc inhibitor, which could be a potential chemotherapeutic agent to target multiple myeloma.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00142\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00142","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

多发性骨髓瘤是一种可以治疗但仍无法治愈的血液肿瘤。随着科学技术的进步,骨髓瘤化疗药物不断增多,大大改善了患者的生活质量。然而,复发仍然是困扰患者和医生的一个严重问题。因此,开发更多高活性和特异性的抑制剂对于骨髓瘤靶向治疗来说迫在眉睫。在这项研究中,我们在筛选组蛋白修饰化合物库后发现了SIRT3抑制剂3-TYP(3-(1H-1,2,3-triazol-4-yl) pyridine),它在骨髓瘤细胞中显示出较高的细胞毒性和诱导DNA损伤的作用。此外,在我们的异种移植肿瘤研究中,3-TYP 的抑制作用也证实了化合物 3-TYP 可以通过降低 c-Myc Ser62 磷酸化水平来降低 c-Myc 蛋白的稳定性,从而抑制原发性骨髓瘤的生长。综上所述,我们的研究结果表明,3-TYP 是一种新型 c-Myc 抑制剂,可作为针对多发性骨髓瘤的潜在化疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Selective SIRT3 Inhibitor 3-TYP Represses Primary Myeloma Growth by Reducing c-Myc Stability

Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors. Thus, developing more highly active and specific inhibitors is urgent for myeloma-targeted therapy. In this study, we identified the SIRT3 inhibitor 3-TYP (3-(1H-1,2,3-triazol-4-yl) pyridine) after screening a histone modification compound library, which showed high cytotoxicity and induced DNA damage in myeloma cells. Furthermore, the inhibitory effect of 3-TYP in our xenograft tumor studies also confirmed that compound 3-TYP could inhibit primary myeloma growth by reducing c-Myc protein stability by decreasing c-Myc Ser62 phosphorylation levels. Taken together, the results of our study identified 3-TYP as a novel c-Myc inhibitor, which could be a potential chemotherapeutic agent to target multiple myeloma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Derisking Future Agrochemicals before They Are Made: Large-Scale In Vitro Screening for In Silico Modeling of Thyroid Peroxidase Inhibition. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging Issue Editorial Masthead Issue Publication Information One-Week Kava Dietary Supplementation Increases Both Urinary N- and O-Glucuronides of NNAL, a Lung Carcinogen Major Metabolite, among Smokers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1