{"title":"以 SLAMF7 为靶点的多功能双特异性纳米囊泡可触发强效抗肿瘤免疫。","authors":"Manman Zhu, Yongjian Wu, Tianchuan Zhu, Jian Chen, Zhenxing Chen, Hanxi Ding, Siyi Tan, Jianzhong He, Qi Zeng, Xi Huang","doi":"10.1158/2326-6066.CIR-23-1102","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively \"decorating\" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1007-1021"},"PeriodicalIF":8.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity.\",\"authors\":\"Manman Zhu, Yongjian Wu, Tianchuan Zhu, Jian Chen, Zhenxing Chen, Hanxi Ding, Siyi Tan, Jianzhong He, Qi Zeng, Xi Huang\",\"doi\":\"10.1158/2326-6066.CIR-23-1102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively \\\"decorating\\\" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"1007-1021\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-23-1102\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-1102","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.