Jiayi Feng, Jingjing Wan, Pengyue Guo, Yang Sun, Fei Chen, Yi Chen, Qingyan Sun, Weidong Zhang, Xia Liu
{"title":"一种非抗生素红霉素衍生物通过调节小鼠的内源性抗疲劳蛋白osomucoid来提高肌肉耐力。","authors":"Jiayi Feng, Jingjing Wan, Pengyue Guo, Yang Sun, Fei Chen, Yi Chen, Qingyan Sun, Weidong Zhang, Xia Liu","doi":"10.1111/1440-1681.13873","DOIUrl":null,"url":null,"abstract":"<p>At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In <i>Orm</i>-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-antibiotic erythromycin derivative improves muscle endurance by regulating endogenous anti-fatigue protein orosomucoid in mice\",\"authors\":\"Jiayi Feng, Jingjing Wan, Pengyue Guo, Yang Sun, Fei Chen, Yi Chen, Qingyan Sun, Weidong Zhang, Xia Liu\",\"doi\":\"10.1111/1440-1681.13873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In <i>Orm</i>-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"51 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13873\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
A non-antibiotic erythromycin derivative improves muscle endurance by regulating endogenous anti-fatigue protein orosomucoid in mice
At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.