{"title":"手性无机半导体的圆偏振光发射和探测。","authors":"Zha Li, Wancai Li, Dehui Li, Wei Tang, Huageng Liang, Huaibing Song, Chao Chen, Liang Gao, Jiang Tang","doi":"10.1007/s12200-024-00120-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral inorganic semiconductors with high dissymmetric factor are highly desirable, but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry. In this study, we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr<sub>3</sub> film and PbS quantum dots (QDs) for circularly polarized light (CPL) emission and detection, respectively. The prepared CsPbBr<sub>3</sub>/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm, featuring high dissymmetric factor up to around 0.4. The electron transition based mechanism is responsible for chirality transfer.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"15"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circularly polarized light emission and detection by chiral inorganic semiconductors.\",\"authors\":\"Zha Li, Wancai Li, Dehui Li, Wei Tang, Huageng Liang, Huaibing Song, Chao Chen, Liang Gao, Jiang Tang\",\"doi\":\"10.1007/s12200-024-00120-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chiral inorganic semiconductors with high dissymmetric factor are highly desirable, but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry. In this study, we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr<sub>3</sub> film and PbS quantum dots (QDs) for circularly polarized light (CPL) emission and detection, respectively. The prepared CsPbBr<sub>3</sub>/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm, featuring high dissymmetric factor up to around 0.4. The electron transition based mechanism is responsible for chirality transfer.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"17 1\",\"pages\":\"15\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-024-00120-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00120-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Circularly polarized light emission and detection by chiral inorganic semiconductors.
Chiral inorganic semiconductors with high dissymmetric factor are highly desirable, but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry. In this study, we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr3 film and PbS quantum dots (QDs) for circularly polarized light (CPL) emission and detection, respectively. The prepared CsPbBr3/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm, featuring high dissymmetric factor up to around 0.4. The electron transition based mechanism is responsible for chirality transfer.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more