{"title":"人类胚胎植入前发育的布尔网络模型","authors":"Mathieu Bolteau, Lokmane Chebouba, Laurent David, Jérémie Bourdon, Carito Guziolowski","doi":"10.1089/cmb.2024.0517","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"513-523"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean Network Models of Human Preimplantation Development.\",\"authors\":\"Mathieu Bolteau, Lokmane Chebouba, Laurent David, Jérémie Bourdon, Carito Guziolowski\",\"doi\":\"10.1089/cmb.2024.0517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"513-523\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0517\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0517","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Boolean Network Models of Human Preimplantation Development.
Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases