模拟果蝇的发育噪声和表型可塑性是相关的

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Evolution Letters Pub Date : 2024-01-15 eCollection Date: 2024-06-01 DOI:10.1093/evlett/qrad069
Keita Saito, Masahito Tsuboi, Yuma Takahashi
{"title":"模拟果蝇的发育噪声和表型可塑性是相关的","authors":"Keita Saito, Masahito Tsuboi, Yuma Takahashi","doi":"10.1093/evlett/qrad069","DOIUrl":null,"url":null,"abstract":"<p><p>Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly <i>Drosophila simulans.</i> Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of <i>D. simulans</i>. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developmental noise and phenotypic plasticity are correlated in <i>Drosophila simulans</i>.\",\"authors\":\"Keita Saito, Masahito Tsuboi, Yuma Takahashi\",\"doi\":\"10.1093/evlett/qrad069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly <i>Drosophila simulans.</i> Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of <i>D. simulans</i>. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrad069\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非遗传变异是基因型对不同环境线索的不同表达所引起的表型变异,大致可分为两类:表型可塑性和发育噪音。这些方面的变异被认为在适应性进化中发挥了重要作用。然而,目前人们对这两类非遗传变异影响进化过程的机制还知之甚少。利用基于机器学习的表型工具,我们独立量化了果蝇拟果蝇翅膀形态特征的表型可塑性和发育噪声。通过饲养实验,我们证明了果蝇翅膀大小和形状的可塑性反应,以及表型可塑性和发育噪声的非零遗传率,这表明适应性表型可塑性可以通过果蝇翅膀形态的遗传调适进化。我们发现表型可塑性与发育噪声之间存在正相关,而表型可塑性对三种环境因素(营养条件、温度和光-暗周期)的反应之间的相关性较差。这些结果表明,表型可塑性和发育噪声以类似的方式促进了可进化性,但是这两种变异之间的对应机制仍有待阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developmental noise and phenotypic plasticity are correlated in Drosophila simulans.

Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly Drosophila simulans. Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of D. simulans. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
期刊最新文献
Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations Genomic patterns in the dwarf kingfishers of northern Melanesia reveal a mechanistic framework explaining the paradox of the great speciators Unraveling mate choice evolution through indirect genetic effects Insular environment-dependent introgression from an arid-grassland orchid to a wetland orchid on an oceanic island Coordination of care reduces conflict and predation risk in a cooperatively breeding bird
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1