SLS 2.0 硬 X 射线光束线光学系统概念。

IF 2.5 3区 物理与天体物理 Journal of Synchrotron Radiation Pub Date : 2024-07-01 Epub Date: 2024-05-31 DOI:10.1107/S1600577524003163
Benedikt Roesner, Joerg Raabe, Philip R Willmott, Uwe Flechsig
{"title":"SLS 2.0 硬 X 射线光束线光学系统概念。","authors":"Benedikt Roesner, Joerg Raabe, Philip R Willmott, Uwe Flechsig","doi":"10.1107/S1600577524003163","DOIUrl":null,"url":null,"abstract":"<p><p>In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226164/pdf/","citationCount":"0","resultStr":"{\"title\":\"The concept for hard X-ray beamline optics at SLS 2.0.\",\"authors\":\"Benedikt Roesner, Joerg Raabe, Philip R Willmott, Uwe Flechsig\",\"doi\":\"10.1107/S1600577524003163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524003163\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524003163","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在瑞士光源的最新升级范围内,将建造或重建五条硬 X 射线光束线。为了发挥这些光束线项目之间的协同作用,我们在此为硬 X 射线光束线提出了一个概念,该概念是为新的存储环量身定制的。在此,我们将从光源、前端到光束线光学系统对这一概念进行描述。后者将被详细介绍,包括硬 X 射线单色器、聚焦光学元件和热负荷管理的全新模块化概念。新的光束线设计简单、易于操作、坚固耐用,将极大地受益于新的存储环所带来的亮度提升。光束线的概念允许广泛应用各种实验技术,从基于传播的方法(如相位对比断层扫描)到纳米分辨率的成像技术。同时,还可以进行光谱学实验和高性能序列 X 射线晶体学实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The concept for hard X-ray beamline optics at SLS 2.0.

In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
BEATS: BEAmline for synchrotron X-ray microTomography at SESAME. Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source. High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up. In situ photodeposition of ultra-small palladium particles on TiO2. StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1