利用 PhyloAcc 鉴定快速进化的非编码基因组元素的实用指南和工作流程。

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2024-11-21 DOI:10.1093/icb/icae056
Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards
{"title":"利用 PhyloAcc 鉴定快速进化的非编码基因组元素的实用指南和工作流程。","authors":"Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards","doi":"10.1093/icb/icae056","DOIUrl":null,"url":null,"abstract":"<p><p>Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1513-1525"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579529/pdf/","citationCount":"0","resultStr":"{\"title\":\"Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.\",\"authors\":\"Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards\",\"doi\":\"10.1093/icb/icae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"1513-1525\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae056\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

比较基因组学为研究基因组进化及其与表型特征的关系提供了大量方法。通过开发和测试整个系统进化的替代模型,人们可以估算系统进化中不同系的分子进化速率,并将这些速率与现存物种的观察结果(如趋同表型)联系起来。此类工作的管道有助于确定基因组变化何时何地可能与表型特征相关或可能对其产生影响。我们最近开发了一套名为 PhyloAcc 的模型,利用贝叶斯框架来估算系统发生树不同分支上的核苷酸替换率,并评估它们与预定义或估算的表型性状之间的关联。 PhyloAcc-ST 和 PhyloAcc-GT 都允许用户事先定义一组目标世系,然后比较不同的模型,找出在一个或多个目标世系中加速变化的基因座。ST 只考虑所有输入基因位点的一个物种树,而 GT 则考虑每个基因位点的不同拓扑结构。PhyloAcc-C 同时模拟分子进化速率和连续性状进化速率,允许用户询问两者是否相关。在此,我们将介绍这些模型,并提供如何准备输入数据和运行 PhyloAcc 的技巧和工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.

Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
The Impact of Light Availability on the Functional Traits of Quercus Robur L. and Acer Platanoides L. First-Year Seedlings by Direct and Indirect Methods. Terrestrial friction-reducing properties of mucus and scale anisotropy in the amphibious Northern Snakehead (Channa argus). Estimating Wingbeat Frequency of Hummingbirds using a No-labeling Learning Computer Vision Approach. Sleep Posture Influences Metabolic Rate and Vigilance in the Common Whitethroat (Curruca Communis). A Mitochondrial Perspective on the Demands of Reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1