{"title":"利用流行病学中的人工智能和软件工程方法,共同创建基于机理模型的决策支持工具。","authors":"Sébastien Picault, Guita Niang, Vianney Sicard, Baptiste Sorin-Dupont, Sébastien Assié, Pauline Ezanno","doi":"10.1016/j.prevetmed.2024.106233","DOIUrl":null,"url":null,"abstract":"<div><p>Epidemiological modeling is a key lever for infectious disease control and prevention on farms. It makes it possible to understand the spread of pathogens, but also to compare intervention scenarios even in counterfactual situations. However, the actual capability of decision makers to use mechanistic models to support timely interventions is limited. This study demonstrates how artificial intelligence (AI) techniques can make mechanistic epidemiological models more accessible to farmers and veterinarians, and how to transform such models into user-friendly decision-support tools (DST). By leveraging knowledge representation methods, such as the textual formalization of model components through a domain-specific language (DSL), the co-design of mechanistic models and DST becomes more efficient and collaborative. This facilitates the integration of explicit expert knowledge and practical insights into the modeling process. Furthermore, the utilization of AI and software engineering enables the automation of web application generation based on existing mechanistic models. This automation simplifies the development of DST, as tool designers can focus on identifying users' needs and specifying expected features and meaningful presentations of outcomes, instead of wasting time in writing code to wrap models into web apps. To illustrate the practical application of this approach, we consider the example of Bovine Respiratory Disease (BRD), a tough challenge in fattening farms where young beef bulls often develop BRD shortly after being allocated into pens. BRD is a multi-factorial, multi-pathogen disease that is difficult to anticipate and control, often resulting in the massive use of antimicrobials to mitigate its impact on animal health, welfare, and economic losses. The DST developed from an existing mechanistic BRD model empowers users, including farmers and veterinarians, to customize scenarios based on their specific farm conditions. It enables them to anticipate the effects of various pathogens, compare the epidemiological and economic outcomes associated with different farming practices, and decide how to balance the reduction of disease impact and the reduction of antimicrobial usage (AMU). The generic method presented in this article illustrates the potential of artificial intelligence (AI) and software engineering methods to enhance the co-creation of DST based on mechanistic models in veterinary epidemiology. The corresponding pipeline is distributed as an open-source software. By leveraging these advancements, this research aims to bridge the gap between theoretical models and the practical usage of their outcomes on the field.</p></div>","PeriodicalId":20413,"journal":{"name":"Preventive veterinary medicine","volume":"228 ","pages":"Article 106233"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167587724001193/pdfft?md5=a9b3dd185e4f566ae1d2f7b462e247ea&pid=1-s2.0-S0167587724001193-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Leveraging artificial intelligence and software engineering methods in epidemiology for the co-creation of decision-support tools based on mechanistic models\",\"authors\":\"Sébastien Picault, Guita Niang, Vianney Sicard, Baptiste Sorin-Dupont, Sébastien Assié, Pauline Ezanno\",\"doi\":\"10.1016/j.prevetmed.2024.106233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epidemiological modeling is a key lever for infectious disease control and prevention on farms. It makes it possible to understand the spread of pathogens, but also to compare intervention scenarios even in counterfactual situations. However, the actual capability of decision makers to use mechanistic models to support timely interventions is limited. This study demonstrates how artificial intelligence (AI) techniques can make mechanistic epidemiological models more accessible to farmers and veterinarians, and how to transform such models into user-friendly decision-support tools (DST). By leveraging knowledge representation methods, such as the textual formalization of model components through a domain-specific language (DSL), the co-design of mechanistic models and DST becomes more efficient and collaborative. This facilitates the integration of explicit expert knowledge and practical insights into the modeling process. Furthermore, the utilization of AI and software engineering enables the automation of web application generation based on existing mechanistic models. This automation simplifies the development of DST, as tool designers can focus on identifying users' needs and specifying expected features and meaningful presentations of outcomes, instead of wasting time in writing code to wrap models into web apps. To illustrate the practical application of this approach, we consider the example of Bovine Respiratory Disease (BRD), a tough challenge in fattening farms where young beef bulls often develop BRD shortly after being allocated into pens. BRD is a multi-factorial, multi-pathogen disease that is difficult to anticipate and control, often resulting in the massive use of antimicrobials to mitigate its impact on animal health, welfare, and economic losses. The DST developed from an existing mechanistic BRD model empowers users, including farmers and veterinarians, to customize scenarios based on their specific farm conditions. It enables them to anticipate the effects of various pathogens, compare the epidemiological and economic outcomes associated with different farming practices, and decide how to balance the reduction of disease impact and the reduction of antimicrobial usage (AMU). The generic method presented in this article illustrates the potential of artificial intelligence (AI) and software engineering methods to enhance the co-creation of DST based on mechanistic models in veterinary epidemiology. The corresponding pipeline is distributed as an open-source software. By leveraging these advancements, this research aims to bridge the gap between theoretical models and the practical usage of their outcomes on the field.</p></div>\",\"PeriodicalId\":20413,\"journal\":{\"name\":\"Preventive veterinary medicine\",\"volume\":\"228 \",\"pages\":\"Article 106233\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167587724001193/pdfft?md5=a9b3dd185e4f566ae1d2f7b462e247ea&pid=1-s2.0-S0167587724001193-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preventive veterinary medicine\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167587724001193\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive veterinary medicine","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167587724001193","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Leveraging artificial intelligence and software engineering methods in epidemiology for the co-creation of decision-support tools based on mechanistic models
Epidemiological modeling is a key lever for infectious disease control and prevention on farms. It makes it possible to understand the spread of pathogens, but also to compare intervention scenarios even in counterfactual situations. However, the actual capability of decision makers to use mechanistic models to support timely interventions is limited. This study demonstrates how artificial intelligence (AI) techniques can make mechanistic epidemiological models more accessible to farmers and veterinarians, and how to transform such models into user-friendly decision-support tools (DST). By leveraging knowledge representation methods, such as the textual formalization of model components through a domain-specific language (DSL), the co-design of mechanistic models and DST becomes more efficient and collaborative. This facilitates the integration of explicit expert knowledge and practical insights into the modeling process. Furthermore, the utilization of AI and software engineering enables the automation of web application generation based on existing mechanistic models. This automation simplifies the development of DST, as tool designers can focus on identifying users' needs and specifying expected features and meaningful presentations of outcomes, instead of wasting time in writing code to wrap models into web apps. To illustrate the practical application of this approach, we consider the example of Bovine Respiratory Disease (BRD), a tough challenge in fattening farms where young beef bulls often develop BRD shortly after being allocated into pens. BRD is a multi-factorial, multi-pathogen disease that is difficult to anticipate and control, often resulting in the massive use of antimicrobials to mitigate its impact on animal health, welfare, and economic losses. The DST developed from an existing mechanistic BRD model empowers users, including farmers and veterinarians, to customize scenarios based on their specific farm conditions. It enables them to anticipate the effects of various pathogens, compare the epidemiological and economic outcomes associated with different farming practices, and decide how to balance the reduction of disease impact and the reduction of antimicrobial usage (AMU). The generic method presented in this article illustrates the potential of artificial intelligence (AI) and software engineering methods to enhance the co-creation of DST based on mechanistic models in veterinary epidemiology. The corresponding pipeline is distributed as an open-source software. By leveraging these advancements, this research aims to bridge the gap between theoretical models and the practical usage of their outcomes on the field.
期刊介绍:
Preventive Veterinary Medicine is one of the leading international resources for scientific reports on animal health programs and preventive veterinary medicine. The journal follows the guidelines for standardizing and strengthening the reporting of biomedical research which are available from the CONSORT, MOOSE, PRISMA, REFLECT, STARD, and STROBE statements. The journal focuses on:
Epidemiology of health events relevant to domestic and wild animals;
Economic impacts of epidemic and endemic animal and zoonotic diseases;
Latest methods and approaches in veterinary epidemiology;
Disease and infection control or eradication measures;
The "One Health" concept and the relationships between veterinary medicine, human health, animal-production systems, and the environment;
Development of new techniques in surveillance systems and diagnosis;
Evaluation and control of diseases in animal populations.