Li Zhou, Feilong Tan, Xue Zhang, Yanhua Li, Wenjie Yin
{"title":"人参皂苷在神经系统疾病中的神经保护作用和机制:进展与展望。","authors":"Li Zhou, Feilong Tan, Xue Zhang, Yanhua Li, Wenjie Yin","doi":"10.1002/iub.2862","DOIUrl":null,"url":null,"abstract":"<p>Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca<sup>2+</sup> pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2862","citationCount":"0","resultStr":"{\"title\":\"Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives\",\"authors\":\"Li Zhou, Feilong Tan, Xue Zhang, Yanhua Li, Wenjie Yin\",\"doi\":\"10.1002/iub.2862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca<sup>2+</sup> pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2862\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iub.2862\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.2862","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
人参皂甙是人参的主要成分,包括 Rb1、Rb2、Rd、Rg1、Rg2 和化合物 K 等。它们已被证明具有多种药理活性。近年来,越来越多的研究致力于探讨各种人参皂甙对神经系统疾病的神经保护作用及其潜在机制。本文全面总结和综述了各种人参皂甙对神经系统疾病,尤其是急慢性神经退行性疾病的神经保护作用及其机制,以及在疾病预防、治疗和预后中促进神经保护的潜在治疗应用。简而言之,人参皂苷通过抗炎、抗氧化和抗细胞凋亡等多种分子机制,对中风、阿尔茨海默病、帕金森病、脑/脊髓损伤等神经系统疾病具有有效的神经保护作用。其中,一些信号通路在相关过程中发挥着重要作用,如 PI3K/Akt、TLR4/NF-κB、ROS/TXNIP/NLRP3、HO-1/Nrf2、Wnt/β-catenin 和 Ca2+ 通路。总之,本研究回顾了近十年来人参皂苷神经保护作用的研究进展,旨在为进一步研究和探索包括人参和三七在内的中药材及其小分子化合物的多种药用价值提供必要的理论依据和有效参考。由于现有的临床研究证据较少,未来的研究应侧重于临床试验,以真正反映各种人参皂苷的临床价值,造福患者。
Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.