Hasanuwan B Ihalagedara, QianFeng Xu, Alexander Greer, Alan M Lyons
{"title":"在超疏水表面生成单线态氧:光敏剂涂层和入射波长对 1O2 产量的影响。","authors":"Hasanuwan B Ihalagedara, QianFeng Xu, Alexander Greer, Alan M Lyons","doi":"10.1111/php.13969","DOIUrl":null,"url":null,"abstract":"<p><p>Photochemical generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of <sup>1</sup>O<sub>2</sub> by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low <sup>1</sup>O<sub>2</sub> physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on <sup>1</sup>O<sub>2</sub> yields. We also investigated the effect of incident wavelength on <sup>1</sup>O<sub>2</sub> yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"167-179"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Singlet oxygen generation on a superhydrophobic surface: Effect of photosensitizer coating and incident wavelength on <sup>1</sup>O<sub>2</sub> yields.\",\"authors\":\"Hasanuwan B Ihalagedara, QianFeng Xu, Alexander Greer, Alan M Lyons\",\"doi\":\"10.1111/php.13969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photochemical generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of <sup>1</sup>O<sub>2</sub> by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low <sup>1</sup>O<sub>2</sub> physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on <sup>1</sup>O<sub>2</sub> yields. We also investigated the effect of incident wavelength on <sup>1</sup>O<sub>2</sub> yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":\" \",\"pages\":\"167-179\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.13969\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.13969","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Singlet oxygen generation on a superhydrophobic surface: Effect of photosensitizer coating and incident wavelength on 1O2 yields.
Photochemical generation of singlet oxygen (1O2) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of 1O2 by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low 1O2 physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on 1O2 yields. We also investigated the effect of incident wavelength on 1O2 yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.