{"title":"地塞米松可减弱促炎细胞因子 TNF-α 对大鼠呼吸系统的影响。","authors":"Nina Pavlovna Aleksandrova, Galina Anatolevna Danilova","doi":"10.1016/j.resp.2024.104284","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the current study was to identify the role of the glucocorticoids in the respiratory effects of proinflammatory cytokines. For this purpose intravenous injections of TNF-α were used in anesthetized spontaneously breathing rats before and after pretreatment of dexamethasone, a synthetic steroid with predominant glucocorticoid activity. Dexamethasone was injected intraperitoneally at a dose of 1 mg/kg. TNF-α was administrated into the tail vein at a dose of 40 mg/kg. We found that dexamethasone pretreatment eliminated the cytokine-induced increase in pulmonary ventilation and decrease in the hypoxic ventilatory response. Dexamethasone had a pronounced rapid effect on the respiratory activity of TNF-α as early as 30 minutes after administration. Therefore, we assume that this mechanism of action of dexamethasone was non-genomic, associated with the blocking of secondary mediators of the cytokine response.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"327 ","pages":"Article 104284"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexamethasone weakens the respiratory effects of pro-inflammatory cytokine TNF-α in rat\",\"authors\":\"Nina Pavlovna Aleksandrova, Galina Anatolevna Danilova\",\"doi\":\"10.1016/j.resp.2024.104284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of the current study was to identify the role of the glucocorticoids in the respiratory effects of proinflammatory cytokines. For this purpose intravenous injections of TNF-α were used in anesthetized spontaneously breathing rats before and after pretreatment of dexamethasone, a synthetic steroid with predominant glucocorticoid activity. Dexamethasone was injected intraperitoneally at a dose of 1 mg/kg. TNF-α was administrated into the tail vein at a dose of 40 mg/kg. We found that dexamethasone pretreatment eliminated the cytokine-induced increase in pulmonary ventilation and decrease in the hypoxic ventilatory response. Dexamethasone had a pronounced rapid effect on the respiratory activity of TNF-α as early as 30 minutes after administration. Therefore, we assume that this mechanism of action of dexamethasone was non-genomic, associated with the blocking of secondary mediators of the cytokine response.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"327 \",\"pages\":\"Article 104284\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000776\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Dexamethasone weakens the respiratory effects of pro-inflammatory cytokine TNF-α in rat
The goal of the current study was to identify the role of the glucocorticoids in the respiratory effects of proinflammatory cytokines. For this purpose intravenous injections of TNF-α were used in anesthetized spontaneously breathing rats before and after pretreatment of dexamethasone, a synthetic steroid with predominant glucocorticoid activity. Dexamethasone was injected intraperitoneally at a dose of 1 mg/kg. TNF-α was administrated into the tail vein at a dose of 40 mg/kg. We found that dexamethasone pretreatment eliminated the cytokine-induced increase in pulmonary ventilation and decrease in the hypoxic ventilatory response. Dexamethasone had a pronounced rapid effect on the respiratory activity of TNF-α as early as 30 minutes after administration. Therefore, we assume that this mechanism of action of dexamethasone was non-genomic, associated with the blocking of secondary mediators of the cytokine response.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.